5£®ÏÂÁÐËĸöÃüÌ⣺
£¨1£©º¯Êýf£¨x£©ÔÚx£¾0ʱÊÇÔöº¯Êý£¬x£¼0Ò²ÊÇÔöº¯Êý£¬ËùÒÔf£¨x£©ÊÇÔöº¯Êý£»
£¨2£©Èôº¯Êýf£¨x£©=ax2+bx+2ÓëxÖáûÓн»µã£¬Ôòb2-8a£¼0ÇÒa£¾0£»
£¨3£©y=x2-2|x|-3µÄµÝÔöÇø¼äΪ[1£¬+¡Þ£©£»
£¨4£©y=1+xºÍy=$\sqrt{£¨1+x£©^{2}}$±íʾÏàµÈº¯Êý£®
£¨5£©Èôº¯Êýf£¨x-1£©µÄ¶¨ÒåÓòΪ[1£¬2]£¬Ôòº¯Êýf£¨2x£©µÄ¶¨ÒåÓòΪ$[0£¬\frac{1}{2}]$£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨5£©£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

·ÖÎö £¨1£©£¬È纯Êýy=-$\frac{1}{x}$£¬ÔÚx£¾0ʱÊÇÔöº¯Êý£¬x£¼0Ò²ÊÇÔöº¯Êý£¬²»ÄÜ˵f£¨x£©ÊÇÔöº¯Êý£»
£¨2£©£¬Èôº¯Êýf£¨x£©=ax2+bx+2ÓëxÖáûÓн»µã£¬Ôòb2-8a£¼0£¬a£¾0»òa£¼0£¬a=b=0ʱ£¬ÓëxÖáûÓн»µã£¬
£¨3£©£¬y=x2-2|x|-3µÄµÝÔöÇø¼äΪ[1£¬+¡Þ£©£¬£¨-¡Þ£¬-1]£»
£¨4£©£¬y=1+xºÍy=$\sqrt{£¨1+x£©^{2}}$µÄ¶ÔÓ¦·¨Ôò¡¢ÖµÓò²»Ò»Ñù£¬±íʾ²»ÏàµÈº¯Êý£®
£¨5£©£¬Èôº¯Êýf£¨x-1£©µÄ¶¨ÒåÓòΪ[1£¬2]⇒0¡Üx-1¡Ü1£¬Ôòº¯Êýf£¨2x£©Âú×ã0¡Ü2x¡Ü1£¬¶¨ÒåÓòΪ$[0£¬\frac{1}{2}]$£®

½â´ð ½â£º¶ÔÓÚ£¨1£©£¬È纯Êýy=-$\frac{1}{x}$£¬ÔÚx£¾0ʱÊÇÔöº¯Êý£¬x£¼0Ò²ÊÇÔöº¯Êý£¬²»ÄÜ˵f£¨x£©ÊÇÔöº¯Êý£¬¹Ê´í£»
¶ÔÓÚ£¨2£©£¬Èôº¯Êýf£¨x£©=ax2+bx+2ÓëxÖáûÓн»µã£¬Ôòb2-8a£¼0£¬a£¾0»òa£¼0£¬a=b=0ʱ£¬ÓëxÖáûÓн»µã£¬¹Ê´í£¬
¶ÔÓÚ£¨3£©£¬y=x2-2|x|-3µÄµÝÔöÇø¼äΪ[1£¬+¡Þ£©£¬£¨-¡Þ£¬-1]£¬¹Ê´í£»
¶ÔÓÚ£¨4£©£¬y=1+xºÍy=$\sqrt{£¨1+x£©^{2}}$µÄ¶ÔÓ¦·¨Ôò¡¢ÖµÓò²»Ò»Ñù£¬±íʾ²»ÏàµÈº¯Êý£¬¹Ê´í£®
¶ÔÓÚ£¨5£©£¬Èôº¯Êýf£¨x-1£©µÄ¶¨ÒåÓòΪ[1£¬2]⇒0¡Üx-1¡Ü1£¬Ôòº¯Êýf£¨2x£©Âú×ã0¡Ü2x¡Ü1£¬¶¨ÒåÓòΪ$[0£¬\frac{1}{2}]$£¬¹ÊÕýÈ·£®
 ¹Ê´ð°¸Îª£º£¨5£©

µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬Éæ¼°µ½Á˺¯ÊýµÄ¸ÅÄîÓëÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®É輯ºÏM=[0£¬$\frac{1}{2}$£©£¬N=[$\frac{1}{2}$£¬1]£¬º¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{1}{2}£¬x¡ÊM}\\{2£¨1-x£©£¬x¡ÊN}\end{array}\right.$£®Èôx0¡ÊMÇÒf£¨f£¨x0£©£©¡ÊM£¬Ôòx0µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬$\frac{1}{4}$]B£®[0£¬$\frac{3}{8}$]C£®£¨$\frac{1}{4}$£¬$\frac{1}{2}$]D£®£¨$\frac{1}{4}$£¬$\frac{1}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ£¬ÓÐÒ»µãÁÐP0£¬P1£¬P2£¬P3£¬¡­£¬Pn-1£¬Pn£¬ÉèµãPkµÄ×ø±ê£¨xk£¬yk£©£¨k¡ÊN£¬k¡Ün£©£¬ÆäÖÐxk¡¢yk¡ÊZ£¬¼Ç¡÷xk=xk-xk-1£¬¡÷yk=yk-yk-1£¬ÇÒÂú×ã|¡÷xk|•|¡÷yk|=2£¨k¡ÊN*£¬k¡Ün£©£»
£¨1£©ÒÑÖªµãP0£¨0£¬1£©£¬µãP1Âú×ã¡÷y1£¾¡÷x1£¾0£¬ÇóP1µÄ×ø±ê£»
£¨2£©ÒÑÖªµãP0£¨0£¬1£©£¬¡÷xk=1£¨k¡ÊN*£¬k¡Ün£©£¬ÇÒ{yk}£¨k¡ÊN£¬k¡Ün£©ÊǵÝÔöÊýÁУ¬µãPnÔÚÖ±Ïßl£ºy=3x-8ÉÏ£¬Çón£»
£¨3£©ÈôµãP0µÄ×ø±êΪ£¨0£¬0£©£¬y2016=100£¬Çóx0+x1+x2+¡­+x2016µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{2x-5}&{x£¼1}\\{x+\frac{a}{x}}&{x¡Ý1}\end{array}}\right.$ΪRÉϵĵ¥µ÷º¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-4£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆË㣺
£¨1£©$£¨\frac{9}{4}{£©^{\frac{1}{2}}}-{£¨-2.5£©^0}-{£¨\frac{8}{27}£©^{\frac{2}{3}}}+{£¨\frac{3}{2}£©^{-2}}$£»
£¨2£©£¨lg 5£©2+lg 2•lg 50£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¹ýÅ×ÎïÏßy2=4xµÄ¶¥µãO×÷Á½Ìõ»¥Ïà´¹Ö±µÄÏÒOA¡¢OB£¬ÇóÏÒABµÄÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ó÷´Ö¤·¨Ö¤Ã÷ÃüÌâ¡°Èý½ÇÐεÄÈý¸öÄÚ½ÇÖÐÖÁ¶àÓÐÒ»¸öÊǶ۽ǡ±Ê±£¬¼ÙÉèÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¼ÙÉèÈý½ÇÐεÄÄÚ½ÇÈý¸öÄÚ½ÇÖÐûÓÐÒ»¸öÊǶ۽Ç
B£®¼ÙÉèÈý½ÇÐεÄÄÚ½ÇÈý¸öÄÚ½ÇÖÐÖÁÉÙÓÐÒ»¸öÊǶ۽Ç
C£®¼ÙÉèÈý½ÇÐεÄÄÚ½ÇÈý¸öÄÚ½ÇÖÐÖÁ¶àÓÐÁ½¸öÊǶ۽Ç
D£®¼ÙÉèÈý½ÇÐεÄÄÚ½ÇÈý¸öÄÚ½ÇÖÐÖÁÉÙÓÐÁ½¸öÊǶ۽Ç

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{|{{2^x}-1}|}}{{{2^x}+1}}$£®
£¨1£©ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨2£©Ð´³öº¯ÊýµÄµ¥µ÷Çø¼ä£¬²¢Ö¤Ã÷º¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵĵ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Å×ÎïÏßy2=2xÓëÖ±Ïßy=x-4Χ³ÉµÄÆ½ÃæÍ¼ÐÎÃæ»ý£¨¡¡¡¡£©
A£®18B£®16C£®20D£®14

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸