9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®ÒÑÖªÔ²O1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬Ô²O2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=-2+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®
£¨1£©°ÑÔ²O1ºÍÔ²O2µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨1£©Çó¾­¹ýÔ²O1ÓëÔ²O2µÄ½»µãµÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£®

·ÖÎö £¨1£©¶ÔÔ²O1µÄ¼«×ø±ê·½³ÌÁ½±ßͬ³Ë¦Ñ¼´¿ÉµÃµ½ÆÕͨ·½³Ì£¬ÓÉÔ²O2µÄ²ÎÊý·½³Ì½â³öcos¦Á£¬sin¦Á£¬Ê¹ÓÃÕýÓàÏ񵀮½·½ºÍµÈÓÚ1Ïû²ÎÊýµÃµ½Ô²O2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©½«Á½Ô²ÆÕͨ·½³ÌÏà¼õ¼´µÃ¹«¹²ÏÒ·½³Ì£®

½â´ð ½â£º£¨1£©¡ß¦Ñ=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£¬¡àÔ²O1µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x=0£®
ÓÉ$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=-2+2sin¦Á}\end{array}\right.$µÃcos¦Á=$\frac{x}{2}$£¬sin¦Á=$\frac{y+2}{2}$£¬
¡àÔ²O2µÄÖ±½Ç×ø±ê·½³ÌΪ£¨$\frac{x}{2}$£©2+£¨$\frac{y+2}{2}$£©2=1£¬¼´x2+y2+4y=0£®
£¨2£©½«Á½Ô²µÄÆÕͨ·½³ÌÏà¼õµÃ-4x-4y=0£¬¼´x+y=0£®
¡à¾­¹ýÔ²O1ÓëÔ²O2µÄ½»µãµÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪx+y=0£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ô²ÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ¹ÅÒÇòµ¥´ò±ÈÈüÖУ¬ÓÉÓÚ²ÎÈüÑ¡Êֽ϶࣬¹Ê³£²ÉÈ¡¡°³éǩ׽¶ÔÌÔÌ­ÖÆ¡±¾ö³ö¹Ú¾ü£®Èô¹²ÓÐ100ÃûÑ¡ÊÖ²ÎÈü£¬´ý¹Ú¾ü²úÉúʱ£¬¹²Ðè¾ÙÐжàÉÙ³¡±ÈÈü£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±Ïßl£º¦Ñsin¦È-¦Ñcos¦È=$\frac{1}{2}$ÓëÇúÏßC½»ÓÚP¡¢QÁ½µã£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÇúÏßCÉϵ±¦Õ=$\frac{2}{3}¦Ð$ʱËù¶ÔÓ¦µÄµãΪM£¬Çó¡÷MPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=xaµÄͼÏó¹ýµã£¨4£¬2£©£¬Áîan=$\frac{1}{f£¨n+1£©+f£¨n£©}$£¬n¡ÊN*£¬¼ÇÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÔòS2014=£¨¡¡¡¡£©
A£®$\sqrt{2013}$-1B£®$\sqrt{2014}$-1C£®$\sqrt{2015}$-1D£®$\sqrt{2015}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãAµÄ×ø±êΪ£¨2-3sin¦Á£¬3cos¦Á-2£©£¬ÆäÖЦÁ¡ÊR£®ÔÚ¼«×ø±êϵ£¨ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßCµÄ·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=a
£¨¢ñ£©Ð´³ö¶¯µãAµÄ¹ì¼£µÄ²ÎÊý·½³Ì²¢ËµÃ÷¹ì¼£µÄÐÎ×´£»
£¨¢ò£©ÈôÖ±ÏßCÓ붯µãAµÄ¹ì¼£ÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µã£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+t}\\{y=2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵxOyµÄOµãΪ¼«µã£¬OxÖáΪ¼«ÖᣬѡÔñÏàͬµÄ³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬µÃÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬ÇóÏß¶ÎABµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ö±Ïß3x-4y=0ÓëÔ²$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏàÇÐB£®ÏàÀë
C£®Ö±Ïß¹ýÔ²ÐÄD£®Ïཻµ«Ö±Ïß²»¹ýÔ²ÐÄ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèA£¬B£¬PÊÇÍÖÔ²$\frac{{x}^{2}}{3}$+y2=1ÉϵÄÈý¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£®¶¯µãQÔÚÏß¶ÎABÉÏ£¬ÇÒ$\overrightarrow{OQ}$•$\overrightarrow{AB}$=0£¬Ôò|$\overrightarrow{PQ}$|µÄȡֵ·¶Î§Îª[1-$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¸ø³öÏÂÁи÷º¯ÊýÖµ£º¢Ùsin100¡ã£»¢Úcos£¨-100¡ã£©£»¢Ûtan£¨-100¡ã£©£»¢Ü$\frac{sin\frac{7¦Ð}{10}cos¦Ð}{tan\frac{17¦Ð}{9}}$£®ÆäÖзûºÅΪ¸ºµÄÊÇ£¨¡¡¡¡£©
A£®¢ÙB£®¢ÚC£®¢ÛD£®¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸