精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若abcosC+bccosA+cacosB=c2,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

分析 由已知数据和余弦定理变形可得a2+b2=c2,可得△ABC为直角三角形.

解答 解:∵由已知可得:c2=bccosA+cacosB+abcosC,
∴由余弦定理可得:c2=$\frac{1}{2}$(b2+c2-a2)+$\frac{1}{2}$(a2+c2-b2)+$\frac{1}{2}$(a2+b2-c2),
整理可得:a2+b2=c2
可得:△ABC为直角三角形.
故选:C.

点评 本题考查正余弦定理判三角形的性质,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2}(-1≤x≤0)}\\{\sqrt{1-{x}^{2}}(0<x≤1)}\end{array}\right.$,则${∫}_{-1}^{1}$f(x)dx=$\frac{1}{3}$+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,jk,使之同时满足下面两个条件:①1≤j1<j2<…jk≤n; ②ji+1-ji≥m(i=1,2,…,k-1),则称数组(j1,j2,…jk)为从n个元素中选出k个元素且限距为m的组合,其组合数记为$C_n^{({k,m})}$.例如根据集合{1,2,3}可得$C_3^{({2,1})}=3$.给定集合{1,2,3,4,5,6,7},可得$C_7^{({3,2})}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.y=x+$\sqrt{9-{x}^{2}}$的值域为[-3,3$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三个集合A={x|x2-3x+2=0},B={x∈R|x2-ax+a-1=0},C={x∈R|x2-bx+2=0},同时满足B?A,C⊆A的实数a、b是否存在?若存在,求出a、b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,∠BAC=120°,AC=3,△ABC的面积等于$\frac{15\sqrt{3}}{4}$,D为边长BC上一点.
(1)求BC的长;
(2)当AD=$\frac{15}{8}$时,求cos∠CAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点 P在曲线y=e2x上,点Q在曲线y=$\frac{1}{2}$lnx上,则|PQ|的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$(1-ln2)B.$\sqrt{2}$(1-ln2)C.$\sqrt{2}$(1+ln2)D.$\frac{{\sqrt{2}}}{2}$(1+ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图由曲线y=x2+2x与y=2x+1所围成的阴影部分的面积是(  )
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{32}{3}$B.8C.12D.$\frac{40}{3}$

查看答案和解析>>

同步练习册答案