精英家教网 > 高中数学 > 题目详情
7.如图由曲线y=x2+2x与y=2x+1所围成的阴影部分的面积是(  )
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

分析 利用定积分的几何意义表示曲边梯形的面积,然后计算.

解答 解:由题意由曲线y=x2+2x与y=2x+1所围成的阴影部分的面积是${∫}_{-1}^{1}(2x+1-{x}^{2}-2x)dx$=${∫}_{-1}^{1}(1-{x}^{2})dx$=$(x-\frac{1}{3}{x}^{3}){|}_{-1}^{1}$=$\frac{4}{3}$;
故选C.

点评 本题考查了利用定积分求封闭图形的面积;关键是正确利用定积分表示面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥B-ACDE中,底面ACDE是直角梯形,AC垂直于AE和CD,BA⊥底面ACDE,且AB=AC=DC=1,EA=$\frac{1}{2}$.
(Ⅰ)求证:平面BCD⊥平面ABC;
(Ⅱ)求平面BDE与平面ABC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若abcosC+bccosA+cacosB=c2,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简$\frac{{cos(π+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(\frac{9π}{2}+α)}}$,得到的结果是(  )
A.-sinαB.cosαC.-tanαD.-$\frac{cosα}{sinα}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“因为指数函数y=ax是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”,导致上面推理错误的原因是(  )
A.大前提错B.小前提错
C.推理形式错D.大前提和小前提都错

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x2+$\frac{1}{x^2}$+2)5展开式中x4项的系数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有(  )
A.12种B.30种C.96种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线3x-ay+8=0与直线x+2y+1=0垂直,则a的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=sin1-cosx,则f′(1)=(  )
A.sin1+cos1B.cos1C.sin1D.sin1-cos1

查看答案和解析>>

同步练习册答案