| A. | -sinα | B. | cosα | C. | -tanα | D. | -$\frac{cosα}{sinα}$ |
分析 原式利用诱导公式化简,约分并利用同角三角函数间的基本关系化简即可得到结果.
解答 解:$\frac{{cos(π+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(\frac{9π}{2}+α)}}$=$\frac{-cosαcos[5π+(\frac{π}{2}-α)]}{-cosαsin[4π+(\frac{π}{2}+α)]}=\frac{-cos(\frac{π}{2}-α)}{sin(\frac{π}{2}+α)}$=$\frac{-sinα}{cosα}=-tanα$,
故选:C.
点评 本题考查了运用诱导公式化简,以及同角三角函数间的基本关系,熟练掌握诱导公式及基本关系是解本题的关键,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2x-5 | B. | -2x-1 | C. | -1 | D. | 5-2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$(1-ln2) | B. | $\sqrt{2}$(1-ln2) | C. | $\sqrt{2}$(1+ln2) | D. | $\frac{{\sqrt{2}}}{2}$(1+ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com