精英家教网 > 高中数学 > 题目详情
5.当$\sqrt{2-x}$有意义时,化简 $\sqrt{x^2-4x+4}$-$\sqrt{x^2-6x+9}$的结果是(  )
A.2x-5B.-2x-1C.-1D.5-2x

分析 求出表达式的定义域,化简所求表达式即可.

解答 解:∵$\sqrt{2-x}$有意义,
∴2-x≥0,即x≤2,
所以原式=$\sqrt{(x-2)2}$-$\sqrt{(x-3)2}$=(2-x)-(3-x)=-1.
故选:C

点评 本题考查函数的定义域,函数的表达式的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x-$\frac{1}{2}$,g(x)=$\frac{{\sqrt{2}}}{4}-\frac{1}{2}$sin2x.
(Ⅰ)求函数f(x)与g(x)图象交点的横坐标;
(Ⅱ)若函数φ(x)=$\frac{{\sqrt{2}}}{4}$-f(x)-g(x),将函数φ(x)图象上的点纵坐标不变,横坐标扩大为原来的4倍,再将所得函数图象向右平移$\frac{5π}{6}$个单位,得到函数h(x),求h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某媒体为了解某地区大学生晚上放学后使用手机上网情况,随机抽取了100名大学生进行调查.如图是根据调查结果绘制的学生每晚使用手机上网平均所用时间的频率分布直方图.将时间不低于40分钟的学生称为“手机迷”.
(1)样本中“手机迷”有多少人?
非手机迷手机迷合计
301545
451055
合计7525100
(2)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“手机迷”与性别有关?
(3)将上述调查所得到的频率视为概率.现在从该地区大量大学 生中,采用随机抽样方法每次抽取1名大学生,抽取3次,经调查一名“手机迷”比“非手机迷”每月的话费平均多40元,记被抽取的3名大学生中的“手机迷”人数为X,且设3人每月的总话费比“非手机迷”共多出Y元,若每次抽取的结果是相互独立的,求X的分布列和Y的期望EY.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=ln(|3x-1|-1)的定义域是(  )
A.(-∞,0)B.$(\frac{2}{3},+∞)$C.$(-∞,0)∪(\frac{2}{3},+∞)$D.$(0,\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在坐标原点,其一个焦点为(0,$\sqrt{3}$),椭圆C上的任意一点到其两个焦点的距离之和为4.
(1)求椭圆C的方程;
(2)设直线y=kx+1与椭圆C交于A、B两点,当OA⊥OB时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在三棱锥S-ABC中,AC⊥BC,AC=3,BC=4,SA=SB=$\sqrt{13}$,平面SAB⊥平面ABC,则二面角S-BC-A的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥B-ACDE中,底面ACDE是直角梯形,AC垂直于AE和CD,BA⊥底面ACDE,且AB=AC=DC=1,EA=$\frac{1}{2}$.
(Ⅰ)求证:平面BCD⊥平面ABC;
(Ⅱ)求平面BDE与平面ABC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若存在n个不同的正整数a1,a2,…,an,对任意1≤i<j≤n,都有$\frac{{{a_i}+{a_j}}}{{{a_i}-{a_j}}}$∈Z,则称这n个不同的正整数a1,a2,…,an为“n个好数”.
(1)请分别对n=2,n=3构造一组“好数”;
(2)证明:对任意正整数n(n≥2),均存在“n个好数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简$\frac{{cos(π+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(\frac{9π}{2}+α)}}$,得到的结果是(  )
A.-sinαB.cosαC.-tanαD.-$\frac{cosα}{sinα}$

查看答案和解析>>

同步练习册答案