精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
x≥1
x+y-4≤0
x-3y+4≤0
,则目标函数z=3x-y的最小值为(  )
A、-4
B、0
C、
4
3
D、4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点A时,直线y=3x-z的截距最大,
此时z最小.
x=1
x+y-4=0
,解得
x=1
y=3

即A(1,3),
此时z=3-3=0,
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,P为线段BC的中点,Q为线段CC1上的动点,过A,P,Q的平面截该正方体所得的截面记为S,则所有正确的命题是
 

①当0<CQ<
1
2
时,S为四边形;
②当CQ=
1
2
时,S为等腰梯形;
③当CQ=
3
4
时,S与C1D1的交点R满足RD1=
1
3

④当
3
4
<CQ<1时,S为五边形;
⑤当CQ=1时,S的面积为
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数f(x)=Asin(ωx+φ)(其中ω>0,0≤φ≤
π
2
)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )
A、-
3
2
B、-
1
2
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是三角形的最大内角,且cos2α=
1
2
,则曲线
x2
cosα
+
y2
sinα
=1
的离心率为(  )
A、
2
B、
3
C、
1+
2
D、
1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x与y之间的关系如下表:
X 1 3 5
y 4 8 15
则y与x的线性回归方程为y=bx+a必经过点(  )
A、(3,7)
B、(3,9)
C、(3.5,8)
D、(4,9)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论:
(1)两条直线都和同一个平面平行,则这两条直线平行;
(2)两条直线没有公共点,则这两条直线平行;
(3)两条直线都和第三条直线垂直,则这两条直线平行;
其中正确的命题个数为(  )
A、0
B、1
C、π
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题正确的个数是(  )
①存在这样的直线,既不与坐标轴平行也不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点;
④直线y=kx+b经过无穷多个整点,当且仅当k与b都是有理数;
⑤存在恰经过一个整点的直线.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(1)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn
(2)若a1=8,
   ①求数列{an}与{bn}的通项公式;
   ②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N*,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点,点P在双曲线上不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A,若|OA|=b,则该双曲线的离心率为
 

查看答案和解析>>

同步练习册答案