精英家教网 > 高中数学 > 题目详情
10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范围.

分析 (Ⅰ)利用奇函数的定义,判断f(x)的奇偶性;
(Ⅱ)f(x)>$\frac{1}{2}$,即$\frac{{a}^{x}-1}{{a}^{x}+1}$>$\frac{1}{2}$,分类讨论,即可求使f(x)>$\frac{1}{2}$的x取值范围.

解答 解:(Ⅰ)f(-x)=$\frac{{a}^{-x}-1}{{a}^{-x}+1}$=-$\frac{{a}^{x}-1}{{a}^{x}+1}$=-f(x)
∴f(x)是奇函数;
(Ⅱ)f(x)>$\frac{1}{2}$,即$\frac{{a}^{x}-1}{{a}^{x}+1}$>$\frac{1}{2}$,
∴ax>3,
则a>1,可得x>loga3;0<a<1,可得x<loga3.

点评 本题考查函数的奇偶性,考查学生解不等式的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一元二次不等式-x2+4x+5<0的解集为(  )
A.(-1,5)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-∞,-5)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:
 采桑不采桑合计
患者人数1812 
健康人数578 
合计   
(1)完成2×2列联表;
(2)利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?
参考数据当χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当χ2>2.706时,有90%把握判定变量A,B有关联;
当χ2>3.841时,有95%把握判定变量A,B有关联;
当χ2>6.635时,有99%把握判定变量A,B有关联.
(参考公式:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=($\frac{1}{2}$)x
(1)求f(-1)的值;
(2)记函数f(x)的值域A,不等式(x-a)(x-a-2)≤0的解集为B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在正方体ABCD-A1B1C1D1,若点E为A1C1上的一动点,则直线CE一定垂直于(  )
A.ACB.BDC.A1DD.A1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下来各式:
(1)化简:a•$\sqrt{a}$•$\root{4}{{a}^{3}}$;
(2)求值:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如表:
组别ABCDE
人数5050150150100
(1)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从E组中抽取了8人.请将其余各组抽取的人数填入如表.
组别ABCDE
人数5050150150100
抽取人数8
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,设每位评委支持歌手不相互影响,求这2人至少有1人支持1号歌手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列-3,-6,…的第四项等于(  )
A.-24B.-9C.-12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=x3-ax2-3x+b在x=1处取得极值2,则实数a,b的值分别为(  )
A.0和-4B.0;b取任意实数C.0和4D.4;b取任意实数

查看答案和解析>>

同步练习册答案