精英家教网 > 高中数学 > 题目详情
1.调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:
 采桑不采桑合计
患者人数1812 
健康人数578 
合计   
(1)完成2×2列联表;
(2)利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?
参考数据当χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当χ2>2.706时,有90%把握判定变量A,B有关联;
当χ2>3.841时,有95%把握判定变量A,B有关联;
当χ2>6.635时,有99%把握判定变量A,B有关联.
(参考公式:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 根据所给的数据完成列联表,求得观测值所用的数据,把数据代入观测值公式中,做出观测值χ2,同临界值表进行比较,χ2≈39.6>6.635,有99%的把握认为“桑葚毛虫皮炎与采桑”有关.

解答 解:完成2×2列联表:

 采桑不采桑合计
患者人数181230 
健康人数578 83
合计 2390  
χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{113×(18×78-5×12)^{2}}{30×83×23×90}$≈39.6>6.635,
∴有99%的把握认为“桑葚毛虫皮炎与采桑”有关.

点评 本题考查独立性检验的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.将语文、数学、物理、化学四本书任意地排放在书架的同一层上,计算:
(1)语文书在数学书的左边的概率是多少?
(2)化学书在语文书的右边,语文书在物理书的右边的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当a<0时,函数y=$\frac{1}{3}$x3-ax2-3a2x-4在(2,+∞)上是增函数,则实数a的取值范围是(  )
A.(-2,0)B.[-2,0)C.[-2,1]D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sinx+$\sqrt{3}$cosx的最小值为(  )
A.1B.2C.$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(Ⅰ)求证:平面ACE⊥平面CDE;
(Ⅱ)求平面CED与平面BEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,最小正周期为$\frac{π}{2}$的是(  )
A.y=sinxB.y=cosxC.y=tan$\frac{x}{2}$D.y=cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为$\frac{π}{2}$的是(  )
A.y=sin$\frac{x}{2}$B.y=2sinxC.y=sin4πD.y=sin(-4x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学在高三年级开设大学先修课程(线性代数),共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的数学效果进行评估,学校按性别分别采用分成抽样的方法抽取5人进行考核.
(1)求抽取的5人中男、女同学的人数;
(2)考核的第一轮是答辩,顺序由已抽取的甲、乙等5位同学按抽签方式决定.设甲、乙两位同学间隔的人数为X,X的分布列为
X3210
P$\frac{1}{10}$b$\frac{3}{10}$a
求数学期望EX;
(3)考核的第二轮是笔试:5位同学的笔试成绩分别为115,122,105,111,109;结合第一轮的答辩情况,他们的考核成绩分别为125,132,115,121,119.这5位同学笔试成绩与考核成绩的方差分别记为s12,s22,试比较s12与s22的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案