分析 (1)语文书在数学书的左边的概率=语文书在数学书的右边的概率;
(2)求出语文、数学、物理、化学四本书任意地排放在书架的同一层上,有A44=24种方法,化学书在语文书的右边,语文书在物理书的右边,有A44÷A33=4种方法,即可求概率.
解答 解:(1)语文书在数学书的左边的概率=语文书在数学书的右边的概率=$\frac{1}{2}$;
(2)语文、数学、物理、化学四本书任意地排放在书架的同一层上,有A44=24种方法,
化学书在语文书的右边,语文书在物理书的右边,有A44÷A33=4种方法,
∴化学书在语文书的右边,语文书在物理书的右边的概率是$\frac{1}{6}$.
点评 本题考查概率的计算,考查排列知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$π | B. | $\frac{3}{4}$π | C. | $\frac{5}{6}$π | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,5) | B. | (-5,1) | C. | (-∞,-1)∪(5,+∞) | D. | (-∞,-5)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 采桑 | 不采桑 | 合计 | |
| 患者人数 | 18 | 12 | |
| 健康人数 | 5 | 78 | |
| 合计 |
| 参考数据 | 当χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
| 当χ2>2.706时,有90%把握判定变量A,B有关联; | |
| 当χ2>3.841时,有95%把握判定变量A,B有关联; | |
| 当χ2>6.635时,有99%把握判定变量A,B有关联. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com