精英家教网 > 高中数学 > 题目详情
20.一元二次不等式-x2+4x+5<0的解集为(  )
A.(-1,5)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-∞,-5)∪(1,+∞)

分析 要解的不等式即即 x2-4x-5>0,即 (x-5)(x+1)>0,由此求得x的范围.

解答 解:一元二次不等式-x2+4x+5<0,即 x2-4x-5>0,即 (x-5)(x+1)>0,
∴x<-1,或x>5,
故选:C.

点评 本题主要考查一元二次不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图的程序框图输出的结果是20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将语文、数学、物理、化学四本书任意地排放在书架的同一层上,计算:
(1)语文书在数学书的左边的概率是多少?
(2)化学书在语文书的右边,语文书在物理书的右边的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}满足a1=1,且对任意的n∈N*都有an+1=an+n+1,则数列{$\frac{1}{a_n}}$}的 前100项的和为(  )
A.$\frac{101}{100}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{101}{200}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100]
(1)求频率分布直方图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分恰好有一人在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)在曲线C上求一点D,使它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t为参数,t∈R)的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当a<0时,函数y=$\frac{1}{3}$x3-ax2-3a2x-4在(2,+∞)上是增函数,则实数a的取值范围是(  )
A.(-2,0)B.[-2,0)C.[-2,1]D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sinx+$\sqrt{3}$cosx的最小值为(  )
A.1B.2C.$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范围.

查看答案和解析>>

同步练习册答案