·ÖÎö £¨¢ñ£©ÏÈÁ½±ßͬ³Ë¦ÑµÃ¦Ñ2=2¦Ñsin¦È£¬ÔÙÀûÓæÑ2=x2+y2£¬¦Ñsin¦È=y¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½â·¨Ò»£ºÏÈÏûÈ¥t¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÔÙÉèµãDµÄ×ø±ê£¬ÀûÓÃÇÐÏßµÄÐÔÖÊ£¬¿ÉµÃÓë¾¹ýÔ²ÐÄÇÒÓëÒÑÖªÖ±Ïß´¹Ö±µÄÖ±Ïß·½³Ì£¬ÔÙÓëÔ²µÄ·½³ÌÁªÁ¢¿ÉµÃx0£¬½ø¶ø¼ìÑé¿ÉµÃµãDµÄ×ø±ê£®
½â·¨¶þ£ºÏÈÏûÈ¥t¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬¿ÉÉèµãD£¨cos¦Õ£¬1+sin¦Õ£©£¨¦Õ¡Ê[0£¬2¦Ð£©£©£®¿ÉµÃµãDµ½Ö±ÏßlµÄ¾àÀëΪd=$2-sin£¨{¦Õ+\frac{¦Ð}{3}}£©$£®ÔÙÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©ÓɦÑ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£¬
¿ÉµÃ¦Ñ2=2¦Ñsin¦È£®
¡ß¦Ñ2=x2+y2£¬¦Ñsin¦È=y£¬
¡àÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2-2y=0£¨»òx2+£¨y-1£©2=1£©£®
£¨¢ò£©½â·¨Ò»£º¡ßÖ±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£¬
ÏûÈ¥tµÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ$y=-\sqrt{3}x+5$£®
¡ßÇúÏßC£ºx2+£¨y-1£©2=1ÊÇÒÔG£¨0£¬1£©ÎªÔ²ÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¬
ÉèµãD£¨x0£¬y0£©£¬ÇÒµãDµ½Ö±Ïßl£º$y=-\sqrt{3}x+5$µÄ¾àÀë×î¶Ì£¬
¡àÇúÏßCÔÚµãD´¦µÄÇÐÏßÓëÖ±Ïßl£º$y=-\sqrt{3}x+5$ƽÐУ®
¼´Ö±ÏßGDÓëlµÄбÂʵij˻ýµÈÓÚ-1£¬¼´$\frac{{{y_0}-1}}{x_0}¡Á£¨{-\sqrt{3}}£©=-1$£®
ÓÖ${x_0}^2+{£¨{{y_0}-1}£©^2}=1$£¬
ÁªÁ¢½âµÃ${x_0}=-\frac{{\sqrt{3}}}{2}$»ò${x_0}=\frac{{\sqrt{3}}}{2}$£®
¡àµãDµÄ×ø±êΪ$£¨-\frac{\sqrt{3}}{2}£¬\frac{1}{2}£©$»ò$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®
ÓÉÓÚµãDµ½Ö±Ïß$y=-\sqrt{3}x+5$µÄ¾àÀë×î¶Ì£¬
µãDµÄ×ø±êΪ$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®
½â·¨¶þ£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£¬
ÏûÈ¥tµÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ$\sqrt{3}x+y-5=0$£®
ÇúÏßCx2+£¨y-1£©2=1ÊÇÒÔG£¨0£¬1£©ÎªÔ²ÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¬
¡ßµãDÔÚÇúÏßCÉÏ£¬¡à¿ÉÉèµãD£¨cos¦Õ£¬1+sin¦Õ£©£¨¦Õ¡Ê[0£¬2¦Ð£©£©£®
¡àµãDµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{|{\sqrt{3}cos¦Õ+sin¦Õ-4}|}}{2}$=$2-sin£¨{¦Õ+\frac{¦Ð}{3}}£©$£®
¡ß¦Õ¡Ê[0£¬2¦Ð£©£¬¡àµ±$¦Õ=\frac{¦Ð}{6}$ʱ£¬dmin=1£®
´ËʱDµÄ×ø±êΪ$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯¡¢µãµÄÖ±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØÏµ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{1}{3}$ | B£® | -3 | C£® | $\frac{1}{3}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\left\{\begin{array}{l}x=3cos¦È\\ y=2sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$ | B£® | $\left\{\begin{array}{l}x=2cos¦È\\ y=3sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$ | ||
| C£® | $\left\{\begin{array}{l}x=9cos¦È\\ y=4sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$ | D£® | $\left\{\begin{array}{l}x=4cos¦È\\ y=9sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬5£© | B£® | £¨-5£¬1£© | C£® | £¨-¡Þ£¬-1£©¡È£¨5£¬+¡Þ£© | D£® | £¨-¡Þ£¬-5£©¡È£¨1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-2£©¡È£¨3£¬+¡Þ£© | B£® | £¨-¡Þ£¬-2£©¡È[1£¬3£© | C£® | £¨-2£¬1]¡È£¨3£¬+¡Þ£© | D£® | £¨-2£¬1£©¡È[1£¬3£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com