5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÔÚÇúÏßCÉÏÇóÒ»µãD£¬Ê¹Ëüµ½Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©µÄ¾àÀë×î¶Ì£¬²¢Çó³öµãDµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨¢ñ£©ÏÈÁ½±ßͬ³Ë¦ÑµÃ¦Ñ2=2¦Ñsin¦È£¬ÔÙÀûÓæÑ2=x2+y2£¬¦Ñsin¦È=y¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½â·¨Ò»£ºÏÈÏûÈ¥t¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÔÙÉèµãDµÄ×ø±ê£¬ÀûÓÃÇÐÏßµÄÐÔÖÊ£¬¿ÉµÃÓë¾­¹ýÔ²ÐÄÇÒÓëÒÑÖªÖ±Ïß´¹Ö±µÄÖ±Ïß·½³Ì£¬ÔÙÓëÔ²µÄ·½³ÌÁªÁ¢¿ÉµÃx0£¬½ø¶ø¼ìÑé¿ÉµÃµãDµÄ×ø±ê£®
½â·¨¶þ£ºÏÈÏûÈ¥t¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬¿ÉÉèµãD£¨cos¦Õ£¬1+sin¦Õ£©£¨¦Õ¡Ê[0£¬2¦Ð£©£©£®¿ÉµÃµãDµ½Ö±ÏßlµÄ¾àÀëΪd=$2-sin£¨{¦Õ+\frac{¦Ð}{3}}£©$£®ÔÙÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©ÓɦÑ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£¬
¿ÉµÃ¦Ñ2=2¦Ñsin¦È£®
¡ß¦Ñ2=x2+y2£¬¦Ñsin¦È=y£¬
¡àÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2-2y=0£¨»òx2+£¨y-1£©2=1£©£®
£¨¢ò£©½â·¨Ò»£º¡ßÖ±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£¬
ÏûÈ¥tµÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ$y=-\sqrt{3}x+5$£®
¡ßÇúÏßC£ºx2+£¨y-1£©2=1ÊÇÒÔG£¨0£¬1£©ÎªÔ²ÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¬
ÉèµãD£¨x0£¬y0£©£¬ÇÒµãDµ½Ö±Ïßl£º$y=-\sqrt{3}x+5$µÄ¾àÀë×î¶Ì£¬
¡àÇúÏßCÔÚµãD´¦µÄÇÐÏßÓëÖ±Ïßl£º$y=-\sqrt{3}x+5$ƽÐУ®
¼´Ö±ÏßGDÓëlµÄбÂʵij˻ýµÈÓÚ-1£¬¼´$\frac{{{y_0}-1}}{x_0}¡Á£¨{-\sqrt{3}}£©=-1$£®
ÓÖ${x_0}^2+{£¨{{y_0}-1}£©^2}=1$£¬
ÁªÁ¢½âµÃ${x_0}=-\frac{{\sqrt{3}}}{2}$»ò${x_0}=\frac{{\sqrt{3}}}{2}$£®
¡àµãDµÄ×ø±êΪ$£¨-\frac{\sqrt{3}}{2}£¬\frac{1}{2}£©$»ò$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®
ÓÉÓÚµãDµ½Ö±Ïß$y=-\sqrt{3}x+5$µÄ¾àÀë×î¶Ì£¬
µãDµÄ×ø±êΪ$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®
½â·¨¶þ£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£¬
ÏûÈ¥tµÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ$\sqrt{3}x+y-5=0$£®
ÇúÏßCx2+£¨y-1£©2=1ÊÇÒÔG£¨0£¬1£©ÎªÔ²ÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¬
¡ßµãDÔÚÇúÏßCÉÏ£¬¡à¿ÉÉèµãD£¨cos¦Õ£¬1+sin¦Õ£©£¨¦Õ¡Ê[0£¬2¦Ð£©£©£®
¡àµãDµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{|{\sqrt{3}cos¦Õ+sin¦Õ-4}|}}{2}$=$2-sin£¨{¦Õ+\frac{¦Ð}{3}}£©$£®
¡ß¦Õ¡Ê[0£¬2¦Ð£©£¬¡àµ±$¦Õ=\frac{¦Ð}{6}$ʱ£¬dmin=1£®
´ËʱDµÄ×ø±êΪ$£¨{\frac{{\sqrt{3}}}{2}£¬\frac{3}{2}}£©$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯¡¢µãµÄÖ±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØÏµ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªtan¦Á=3£¬Ôò$\frac{cos£¨¦Ð-¦Á£©}{{cos£¨¦Á-\frac{¦Ð}{2}£©}}$µÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{3}$B£®-3C£®$\frac{1}{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Çóº¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©µÄͼÏóµÄ×îСÕýÖÜÆÚ£¬µ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®°ÑÍÖÔ²µÄÆÕͨ·½³Ì9x2+4y2=36»¯Îª²ÎÊý·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}x=3cos¦È\\ y=2sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$B£®$\left\{\begin{array}{l}x=2cos¦È\\ y=3sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$
C£®$\left\{\begin{array}{l}x=9cos¦È\\ y=4sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$D£®$\left\{\begin{array}{l}x=4cos¦È\\ y=9sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ò»Ôª¶þ´Î²»µÈʽ-x2+4x+5£¼0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-1£¬5£©B£®£¨-5£¬1£©C£®£¨-¡Þ£¬-1£©¡È£¨5£¬+¡Þ£©D£®£¨-¡Þ£¬-5£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¸´Êý$\frac{£¨1-i£©^{2}}{i}$µÄÖµÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®²»µÈʽ$\frac{x-1}{{{x^2}-x-6}}$¡Ý0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-2£©¡È£¨3£¬+¡Þ£©B£®£¨-¡Þ£¬-2£©¡È[1£¬3£©C£®£¨-2£¬1]¡È£¨3£¬+¡Þ£©D£®£¨-2£¬1£©¡È[1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªº¯Êýf£¨x£©µÄͼÏóÈçͼËùʾ£¬f'£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£¬½«ÏÂÁÐÈý¸öÊýÖµf£¨2£©-f£¨1£©£¬f'£¨1£©£¬f'£¨2£©ÓÉСµ½´óÅÅÁÐ˳ÐòΪf¡ä£¨2£©£¼f£¨2£©-f£¨1£©£¼f¡ä£¨1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆËãÏÂÀ´¸÷ʽ£º
£¨1£©»¯¼ò£ºa•$\sqrt{a}$•$\root{4}{{a}^{3}}$£»
£¨2£©ÇóÖµ£ºlog535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸