精英家教网 > 高中数学 > 题目详情
5.如图,在正方体ABCD-A1B1C1D1,若点E为A1C1上的一动点,则直线CE一定垂直于(  )
A.ACB.BDC.A1DD.A1D1

分析 由线面垂直的判定能推导出BD⊥平面A1C1C,根据线面垂直的性质从而可得BD⊥CE,从而得解.

解答 解:∵在正方体ABCD-A1B1C1D1中,ABCD是正方形,
∴BD⊥A1C1,且BD⊥CC1,又A1C1∩CC1=C1
∴BD⊥平面A1C1C,
又∵CE?平面A1C1C,
∴BD⊥CE,
故选:B.

点评 本题主要考查了线面垂直的判定及性质,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100]
(1)求频率分布直方图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分恰好有一人在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(Ⅰ)求证:平面ACE⊥平面CDE;
(Ⅱ)求平面CED与平面BEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为$\frac{π}{2}$的是(  )
A.y=sin$\frac{x}{2}$B.y=2sinxC.y=sin4πD.y=sin(-4x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在[-1,+∞]上的函数在区间[-1,3)上的解析式为f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,当x≥3时,函数满足f(x)=f(x-4)+1,若函数g(x)=f(x)-kx-k有6个零点,则实数k的取值或取值范围为(  )
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2lnx-ax.
(1)若曲线f(x)在点(1,f(1))处的切线过点(2,0),求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+3|x-a|+2(a∈R).
(1)当a=0时,讨论f(x)的单调性;
(2)当a≤1时,求f(x)在区间[0,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x,y,z∈R,且x+3y-2z=3,求x2+y2+z2的最小值.

查看答案和解析>>

同步练习册答案