精英家教网 > 高中数学 > 题目详情
1.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列,则an=2n

分析 数列{an}的前n项和Sn=2an-a1,当n≥2时,an=Sn-Sn-1,可得an=2an-1.由a1,a2+1,a3成等差数列,可得2(a2+1)=a3+a1,代入解出a1,利用等比数列的通项公式即可得出.

解答 解:数列{an}的前n项和Sn=2an-a1
当n≥2时,an=Sn-Sn-1=2an-2an-1
∴an=2an-1
∵a1,a2+1,a3成等差数列,
∴2(a2+1)=a3+a1
∴4a1+2=4a1+a1
解得a1=2,
∴数列{an}是等比数列,首项与公比都为2.
∴an=2n
故答案为:2n

点评 本题考查了等比数列的通项公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|$\frac{x-2a}{x-({a}^{2}+1)}$<0}.
(1)当a=2时,求A∩B;
(2)命题p:x∈A;命题q:x∈B.¬p是¬q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直角梯形ABCD如图1所示,CD=2,AB=4,AD=2,线段AB上有一点P,过点P作AB的垂线交l,当点P从点A运动到点B时,记AP=x,l截直角梯形的左边部分面积为S(x),
(1)试写出S(x)关于x的函数,并在图2中画出函数图象.
(2)当点P位于何处时,S(x)为直角梯形ABCD面积的$\frac{3}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的通项公式为an=2ncos$\frac{nπ}{2}$,n∈N*,其前n项和为Sn,则S2016=$\frac{4}{5}$(22016-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在x=0处连续.下列结论不正确的是(  )
A.若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f′(0)存在B.若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f(0)=0
C.若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f(0)=0D.若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f′(0)存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:
(1)已知扇形的周长为10,面积是4,求扇形的圆心角.
(2)已知扇形的周长为40,当他的半径和圆心角取何值时,才使扇形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.同学们都有这样的解题经验:在某些数列的求和中,可把其中一项分裂成两项之差,使得某些项可以相互抵消,从而实现化简求和.如:已知数列{an}的通项为an=$\frac{1}{n(n+1)}$,则将其通项化为an=$\frac{1}{n}$-$\frac{1}{n+1}$,故数列{an}的前n项和Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
已知等差数列{an}的前n项和为Sn,a5=5,S5=15,求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知二次函数f(x)=x2-2x-1.
(1)求f(x)在[0,3]上的最大值;
(2)设f(x)在[t,t+2]上的最小值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+4)=f(x),若f(-3)=2,则f(11)等于(  )
A.2012B.2C.2013D.-2

查看答案和解析>>

同步练习册答案