精英家教网 > 高中数学 > 题目详情
若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点P是抛物线上的一动点,则|PA|+|PF|取得最小值时点P的坐标是(  )
A.(0,0)B.(1,1)C.(2,2)D.(
1
2
,1)
根据题意,作图如下,

设点P在其准线x=-
1
2
上的射影为M,有抛物线的定义得:|PF|=|PM|,
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|(当且仅当M,P,A三点共线时取“=”),
∴|PA|+|PF|取得最小值时(M,P,A三点共线时)点P的纵坐标y0=2,设其横坐标为x0
∵P(x0,2)为抛物线y2=2x上的点,
∴x0=2,
∴点P的坐标为P(2,2).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点,方向向量为(1,
3
)
的直线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法中,正确的有______.
①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点F的距离是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的图形是圆;
③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=13;
⑤双曲线
y2
49
-
x2
25
=-1的渐近线方程是y=±
5
7
x.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的准线也是双曲线
x2
a2
-
4y2
3
=1
的一条准线,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当a为任意实数时,直线ax+y-8=0恒过定点P,则以点P为焦点的抛物线的标准方程是(  )
A.y2=32xB.x2=32yC.y2=-32xD.x2=-32y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等边三角形的一个顶点在坐标原点,另外两个顶点在抛物线y2=2x上,则该三角形的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足
ON
=
3
4
OM
,O为坐标原点.则抛物线C的方程______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.
(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?
(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞.试问:一艘顶部宽4
2
m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案