精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{{{e^x}-m}}{{{e^x}+1}}$+mx是定义在R上的奇函数,则实数m=1.

分析 利用f(0)=0,即可求出m.

解答 解:由题意,f(0)=$\frac{1-m}{2}$=0,∴m=1,
此时,满足f(-x)=-f(x).
故答案为1.

点评 本题主要考查奇函数的性质应用,函数的恒成立问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为4,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 求弦AB的长;
(Ⅱ) 若直线l的斜率为k,且$k≥\frac{{\sqrt{6}}}{2}$,求椭圆C的长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知边长为1的正方形ABCD,沿对角线AC把△ACD折起,使平面ACD⊥平面ABC,则三棱锥D-ABC的外接球的表面积等于2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等差数列{an}与等比数列{bn}满足:0<a1=b1<a5=b5,则下述结论一定成立的是(  )
A.a3<b3B.a3>b3C.a6<b6D.a6>b6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}}\right.$,则z=3x-2y的最小值为(  )
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移$\frac{π}{3}$个单位后得到函数g(x)=-cos2x的图象,则函数 f(x)的图象(  )
A.关于直线x=$\frac{π}{12}$对称B.关于直线x=$\frac{5π}{12}$对称
C.关于点($\frac{π}{12}$,0)对称D.关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-ax(a∈R).
(I) 当a=1时,求证:f(x)≥1;
(Ⅱ)若函数f(x)有两个零点x1,x2,其中x1<x2,求a的取值范围;
(Ⅲ)在(2)的条件下,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知三点A(1,0)、B(2,-3)、C(-2,a),向量$\overrightarrow{BA}$与$\overrightarrow{BC}$的夹角和直线BA与BC的夹角的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若方程sin2x+2sinx+a=0有解,则实数a的取值范围是(  )
A.[-3,1]B.(-∞,1]C.[1,+∞)D.[-1,1]

查看答案和解析>>

同步练习册答案