精英家教网 > 高中数学 > 题目详情
8.若方程sin2x+2sinx+a=0有解,则实数a的取值范围是(  )
A.[-3,1]B.(-∞,1]C.[1,+∞)D.[-1,1]

分析 用sinx表示a,进而二次函数的性质和sinx的范围确定a的范围.

解答 解:对方程等价变换得a=-sin2x-2sinx=-sin2x-2sinx-1+1=-(sinx+1)2+1,
∵-1≤sinx≤1,
∴-3≤a≤1
故选:A.

点评 本题主要考查了二次函数的性质,三角函数的最值问题.解题的关键是转化成二次函数的问题,利用二次函数的性质来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{{{e^x}-m}}{{{e^x}+1}}$+mx是定义在R上的奇函数,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,c<d<0,则一定有(  )
A.ac>bdB.ac<bdC.ad<bcD.ad>bc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.棱长为2的正方体的顶点都在同一个球面上,则球的表面积是(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱ABC-A1B1C1,A1A⊥底面ABC,且△ABC为正三角形,且,D为AC中点.
(1)求证:平面BC1D⊥平面AA1CC1
(2)若AA1=AB=2,求点A到面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系.曲线C的极坐标方程是ρ=4cosθ(0$≤θ≤\frac{π}{2}$),直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求直线l的直角坐标方程和曲线C的参数方程;
(2)求曲线C上的动点M到直线l的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右顶点A是抛物线y2=8x的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点P(0,$\frac{5}{3}$)的直线l与椭圆交于M,N两个不同的点,且使$\overrightarrow{QM}$=4$\overline{QN}$-3$\overline{QP}$成立(Q为直线l外的一点)?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率;并补全频率分布直方图;
(Ⅱ)求在[60,70),[70,80)分数段上各有多少人?
(Ⅲ)用分层抽样方法在分数段[60,80)的学生中抽取一个容量为6的样本.将该样本看成一个总体,从中任取2人,求至多有一人在分数段[60,80)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.在极坐标系中,设点P为曲线C1:ρ=2cosθ上的任意一点,点Q在射线OP上,且满足|OP|•|OQ|=6,记Q点的轨迹为C2
(1)求曲线C2的直角坐标方程;
(2)直线l:θ=$\frac{π}{3}$分别交C1与C2交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案