精英家教网 > 高中数学 > 题目详情
1.函数y=sin(lnx)的导数y′=(  )
A.ln(cosx)B.cos(lnx)C.-$\frac{1}{x}$cos(lnx)D.$\frac{1}{x}$cos(lnx)

分析 根据题意,令t=lnx,则y=sint,根据复合函数的导数公式进行求导即可答案.

解答 解:根据题意,令t=lnx,则y=sint,
则其导数y′=cos(t)•(lnx)′=cos(lnx)•(lnx)′=$\frac{1}{x}$cos(lnx),
故选:D.

点评 本题考查复合函数导数的计算,关键是掌握复合函数导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合U={-2,-1,0,1,2},A={x|x2-x-2=0},则∁UA=(  )
A.{-2,1}B.{-1,2}C.{-2,0,1}D.{2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$α∈({\frac{π}{2},π})$且sinα+cosα=$\frac{{1-\sqrt{3}}}{2}$,
(1)求cosα的值;
(2)若sin(α-β)=-$\frac{3}{5},β∈(\frac{π}{2},π)$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$.
(1)求函数f(x)的对称轴方程及相邻两条对称轴间的距离d;
(2)设α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若acosB+bcos(B+C)=0,证明:△ABC为等腰三角形;
(2)若角A,B,C成等差数列,b=2.求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|+|x-1|+2a.
(1)若f(2)≥0,求实数a的取值范围;
(2)若存在x∈R使得不等式f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=aex-2-lnx+1的图象在点(2,f(2))处的切线斜率为$\frac{5}{2}$,则实数a=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=lnx-x2与g(x)=x2$-\frac{2}{x}$-m的图象上存在关于原点对称的点,则实数m的取值范围是(  )
A.(-∞,1-ln2]B.[0,1-ln2)C.(1-ln2,1+ln2]D.[1+ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,且2acosC+c=2b.
(1)求角A的大小;
(2)若a2=3bc,求tanB的值.

查看答案和解析>>

同步练习册答案