精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且,平面ABCD⊥平面ABEF

(1)求证:BE⊥DF;

(2)求三棱锥C﹣AEF的体积V.

【答案】(1)见解析; (2).

【解析】

(1)取的中点,连结,利用勾股定理可得由面面垂直的性质可得 平面可得由此可得 平面 平面从而可得结果;(2)平面可得,由(1)得, 平面由棱锥的体积公式可得结果.

(1)取EF的中点G,连结AG,

∵EF=2AB,∴AB=EG,

又AB∥EG,∴四边形ABEG为平行四边形,

∴AG∥BE,且AG=BE=AF=2,

在△AGF中,GF=,AG=AF=2,

,∴AG⊥AF,

∵四边形ABCD是矩形,∴AD⊥AB,

又平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB,

∴AD⊥平面ABEF,又AG平面ABEF,

∴AD⊥AG,

∵ADAF=A,∴AG⊥平面ADF,

∵AG∥BE,∴BE⊥平面ADF,

∵DF平面ADF,∴BE⊥DF;

(2)∵CD∥AB且平面ABEF,BA平面ABEF,

∴CD∥平面ABEF,∴

由(1)得,DA⊥平面ABEF,

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据国家统计局发布的数据,201911月全国(居民消费价格指数),同比上涨上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响上涨3.27个百分点.下图是201911一篮子商品权重,根据该图,下列四个结论正确的有______

一篮子商品中权重最大的是居住

一篮子商品中吃穿住所占权重超过

③猪肉在一篮子商品中权重为

④猪肉与其他禽肉在一篮子商品中权重约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题表示双曲线,命题表示椭圆.

1)若命题p与命题q都为真命题,则pq的什么条件?

2)若为假命题,且为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1PQ分别是线段上的动点,且满足,则下列命题错误的是(

A.存在PQ的某一位置,使

B.的面积为定值

C.时,直线是异面直线

D.无论PQ运动到任何位置,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是________.

的最大值点.

②函数有且只有1个零点.

③存在正实数,使得恒成立.

④对任意两个不相等的正实数,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐、高三丈,前后相去千步,今后表与前表相直,从前表却行百二十三步,人目著地望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆的底部和岛的底部在同一水平直线上,从前标杆退行123步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?)(丈、步为古时计量单位,三丈=5步).则海岛高度为

A. 1055步 B. 1255步 C. 1550步 D. 2255步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在定义域上是单调增函数,求实数a的取值范围;

2)讨论的极值点的个数;

3)若有两个极值点,且,求的最小值.

查看答案和解析>>

同步练习册答案