精英家教网 > 高中数学 > 题目详情
12.执行如图所示的程序框图,若输出结果为63,则M处的条件为(  )
A.k<64?B.k≥64?C.k<32?D.k≥32?

分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=64时,应该满足条件,退出循环,输出S的值为63,从而可判断M处的条件为:k≥64?

解答 解:模拟执行程序框图,可得
k=1,S=0
不满足条件,S=1,k=2
不满足条件,S=3,k=4
不满足条件,S=7,k=8
不满足条件,S=15,k=16
不满足条件,S=31,k=32
不满足条件,S=63,k=64
由题意,此时,应该满足条件,退出循环,输出S的值为63.
故可判断M处的条件为:k≥64?
故选:B.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设不等式组$\left\{\begin{array}{l}{x-2y+2≥0}\\{x≤4}\\{y≥-2}\end{array}\right.$表示的平面区域为D,则区域D的面积为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积是(  ) 
A.6$\sqrt{5}$B.4($\sqrt{5}$+1)C.4$\sqrt{5}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,-7)共线,则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
申请意向
年龄
摇号竞价(人数)合计
电动小汽车(人数)非电动小汽车(人数)
30岁以下
(含30岁)
5010050200
30至50岁
(含50岁)
50150300500
50岁以上10015050300
合计2004004001000
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算(log32-log318)÷81-${\;}^{\frac{1}{4}}$=(  )
A.-$\frac{3}{2}$B.-6C.$\frac{3}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.下列数表中各数均为正数,且各行依次成等差数列,各列依次成等比数列,公比均相等,已知a11=1,a23=14,a32=16;
a11  a12  a13  …a1n
a21  a22  a23  …a2n

an1 an2 an3 …anm
(1)求数列{an1}的通项公式;
(2)设bn=$\frac{{a}_{1n}}{{a}_{{n}_{1}}}$,Tn为数列{bn}的前n项和,若Tn<m2-7m对一切nN*都成立,求最小的正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,点D为椭圆E上任意一点.△DF1F2面积最大值为1,椭圆离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设T为直线x=2上任意一点,过右焦点F2,作直线TF2的垂线交椭圆E于点P、Q,线段PQ的中点为N,
     证明:O、N、T三点共线(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为$\frac{2}{5}$.
    专业
性别
中文英语数学体育
n1m1
1111
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

同步练习册答案