精英家教网 > 高中数学 > 题目详情
如图所示的方格纸中有定点O,P,Q,E,F,G,H,则
OP
+
OQ
=(  )
A、
OH
B、
OG
C、
EO
D、
FO
考点:向量的加法及其几何意义
专题:平面向量及应用
分析:利用向量的坐标运算即可得出.
解答: 解:如图所示,
∵P(-2,-2),Q(4,-1),F(-2,3).
OP
+
OQ
=(-2,-2)+(4,-1)=(2,-3),
OF
=(-2,3),
OP
+
OQ
=
FO

故选:D.
点评:本题考查了向量的坐标运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有(  )
A、①②③B、①③C、②③D、①

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是直线ax+by+c=0(b≠0)上两点,则|AB|等于(  )
A、
|x1-x2|
a2+b2
B、|
x1-x2
b
|
a2+b2
C、|x1-x2|
a2+b2
D、|
x1-x2
a
|
a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|a2x2-1|+ax(a∈R,且a≠0).
(Ⅰ)当a<0时,若函数y=f(x)-c恰有x1,x2,x3,x4四个零点,求x1+x2+x3+x4的值;
(Ⅱ)若不等式f(x)≥|x|对一切x∈[b,+∞)都成立,求a2b2+(b-
1
2
2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BD=3,DC=5,∠B=30°,∠ADC═45° 求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象与x轴有四个交点,且满足f(2+t)=f(2-t),则这四个交点的横坐标之和x1+x2+x3+x4等于(  )
A、8B、4C、2D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知(
3
sinB-cosB)(
3
sinC-cosC)=4cosBcosC.
(Ⅰ) 求角A的大小;
(Ⅱ) 若sinB=psinC,且△ABC是锐角三角形,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=
-7x
x2+x+1

(1)求f(-4)的值;
(2)求当x<0时,f(x)的解析式;
(3)试证明函数y=f(x)(x≥0)在[0,1]上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区要建造一条防洪堤,其横断面为等腰梯形(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9
3
平方米,且高度不低于
3
米,记防洪堤横断面的腰长为x(米),则其腰长x的取值范围是
 

查看答案和解析>>

同步练习册答案