精英家教网 > 高中数学 > 题目详情
在△ABC中,BD=3,DC=5,∠B=30°,∠ADC═45° 求AC.
考点:三角形中的几何计算
专题:解三角形
分析:先在△ABD中利用正弦定理求出AB的值,然后再在△ABC中利用余弦定理求出AC的值即可.
解答: 解:由已知得∠ADB=135°,所以∠BAD=15°,
易知sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=
6
-
2
4

所以在△ABD中由正弦定理得AB=
BDsin135°
sin15°
=
2
2
6
-
2
4
=3(
3
+1)

所以在△ABC中,AC2=AB2+BC2-2AB•BC•cos30°
=(3
3
+3)2+82-2×(3
3
+3)×8×
3
2

=28-6
3

所以AC=3
3
-1
点评:本题考查了利用正余弦定理解三角形问题的基本思路,关键是将所给的与所求的置于同一个三角形中,然后联系相应的正弦或余弦定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是(  )
A、
7
4
π
B、2π
C、
9
4
π
D、3π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且满足4cosC+cos2C=4cosCcos2
C
2

(1)求∠C的大小;
(2)若|
CA
-
1
2
CB
|=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过椭圆顶点(a,0),(0,b)的直线与圆x2+y2=
2
3
相切.
(1)求椭圆C的方程;
(2)若过点 M(2,0)的直线与椭圆C相交于两点 A,B,设 P为椭圆上一点,且满足
OA
+
OB
=t
OP
( O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:
①值域为(-1,1),且当x>0时,-1<f(x)<0;
②对于定义域内任意的实数x、y,均满足:f(x+y)=
f(x)+f(y)
1+f(x)f(y)

(1)试求f(0)的值;
(2)已知函数g(x)的定义域为(-1,1),且满足条件g[f(x)]=x对任意x∈R恒成立,求g(
1
2
)+g(-
1
2
);
(3)证明:g(
1
5
)+g(
1
11
)+…+g(
1
n2+3n+1
)>g(
1
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的方格纸中有定点O,P,Q,E,F,G,H,则
OP
+
OQ
=(  )
A、
OH
B、
OG
C、
EO
D、
FO

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为正常数)
(1)求证:数列{an}是等比数列;
(2)数列{bn}满足:b1=2a1,bn=
bn-1
1+bn-1
(n≥2,n∈N+),求数列{bn}的通项公式;
(3)在满足(2)的条件下,求数列{
2n+1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}满足a1,a3,a5+18成等比数列,且第5到第9项之间的和是100.
(1)求数列{an}的通项公式;
(2)设bn=
an+4
3
,若数列{
1
bnbn+1
}的前n项和为Sn,求
Sn
n+2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种放射性元素,100年后只剩原来的一半.现有这种元素1克,3年后剩下
 
克.

查看答案和解析>>

同步练习册答案