精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且满足4cosC+cos2C=4cosCcos2
C
2

(1)求∠C的大小;
(2)若|
CA
-
1
2
CB
|=2,求△ABC面积的最大值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:解三角形
分析:(1)利用二倍角公式对原等式化简可求得cosC的值,进而求得C.
(2)对原等式平方,利用向量的数量积的运算公式求得关于a和b的关系式,进而利用基本不等式求得ab的范围,进而求得三角形面积的最大值.
解答: 解:(1)∵4cosC+cos2C=4cosCcos2
C
2

∴cosC=
1
2

由C为三角形的内角,则C=
π
3

(2)∵|
CA
-
1
2
CB
|=2,
∴(|
CA
-
1
2
CB
|)2=4,
CA
2+
1
4
AB
2-
CA
CB
=4,
即b2+
1
4
a2-
1
2
ab=4,
∵b2+
1
4
a2≥ab,
∴4+
1
2
ab≥ab,
ab≤8,当且仅当b=
1
2
a时等号成立.
则△ABC的面积S=
1
2
absinC≤2
3

则三角形ABC的面积的最大值为2
3
点评:本题主要考查了三角函数恒等变换的应用,平面向量的数量积的运算的应用.考查了学生计算能力和变通能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).
(1)在给定的图示中画出函数f(x)的图象(不需列表);
(2)求函数f(x)的解析式;
(3)讨论方程f(x)-k=0的根的情况.(只需写出结果,不要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

某项公益活动需要从3名学生会干部和2名非学生会干部中选出3人参加,则所选的3个人中至少有1个是非学生会干部的概率是(  )
A、
1
10
B、
3
10
C、
3
5
D、
9
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
x-2
x+1
(a>1).
(1)讨论函数f(x)的单调性;
(2)函数f(x)是否有负零点,若有,请求出负零点;若没有,请予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是直线ax+by+c=0(b≠0)上两点,则|AB|等于(  )
A、
|x1-x2|
a2+b2
B、|
x1-x2
b
|
a2+b2
C、|x1-x2|
a2+b2
D、|
x1-x2
a
|
a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB是圆O的直径,
AD
=
DE
,AB=10,BD=8,则cos∠BCE=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BD=3,DC=5,∠B=30°,∠ADC═45° 求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,且tanA:tanB:tanC=1:2:3.
(1)求角A;
(2)求
b
c

查看答案和解析>>

同步练习册答案