精英家教网 > 高中数学 > 题目详情
9.已知$\frac{3-a}{4}$和4的等比中项为$\sqrt{2}$b,且a>1,则$\frac{2}{a-1}$$+\frac{1}{{b}^{2}}$的最小值为(  )
A.4B.5C.6D.8

分析 先根据等比中项得到a与b的关系,再构造函数,从而求导判断函数的单调性,从而求出最值.

解答 解:∵$\frac{3-a}{4}$和4的等比中项为$\sqrt{2}$b,
∴2b2=3-a,
∴$\frac{2}{a-1}$$+\frac{1}{{b}^{2}}$=$\frac{2}{a-1}$+$\frac{2}{3-a}$,
设f(x)=$\frac{2}{x-1}$-$\frac{2}{x-3}$,x>1,
∴f′(x)=-$\frac{2}{(x-1)^{2}}$+$\frac{2}{(x-3)^{2}}$=$\frac{8(x-2)}{(x-1)^{2}(x-3)^{2}}$,
令f′(x)=0,解得x=2,
当1<x<2时,f′(x)<0,函数f(x)单调递减,
当2<x<3或x>3时,f′(x)>0,函数f(x)单调递增,
∴f(x)min=f(2)=$\frac{2}{2-1}$-$\frac{2}{2-3}$=4,
故$\frac{2}{a-1}$$+\frac{1}{{b}^{2}}$的最小值为4,
故选:A

点评 本题考查了导数的综合应用,同时考查了转化思想的应用及整体思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.己知集合A={x|(x-1)(x-2)<0},B={x|1≤2x≤4},则A∩B=(  )
A.{x|l<x<2}B.{x|l≤x≤2}C.{x|l≤x<2}D.{x|0≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线${C_1}:y=cosx,{C_2}:y=sin(2x+\frac{2π}{3})$,则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移 $\frac{π}{6}$个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 $\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在四棱锥P-ABCD中,底面ABCD为平行四边形,G为PB的中点,则三棱锥D-GAB与三棱锥P-GAC体积之比为1:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出 2017 个数:1,2,4,7,11,…,要计算这2017个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入(  )
A.i≤2017?;p=p+i-1B.i≤2018?;p=p+i+1C.i≤2018?;p=p+iD.i≤2017?;p=p+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两直线m、n和平面α,若m⊥α,n∥α,则直线m、n的关系一定成立的是(  )
A.m与n是异面直线B.m⊥nC.m与n是相交直线D.m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从集合{11,12,13,14,15}中随机取出一个数,设事件A为“取出的数为偶数”,事件B为“取出的数为奇数”,则事件A与B(  )
A.是互斥且对立事件B.是互斥且不对立事件
C.不是互斥事件D.不是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线3x+$\sqrt{3}$y+1=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间(0,1)内为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

同步练习册答案