精英家教网 > 高中数学 > 题目详情
13.在△ABC中,A、B、C的对边分别为a、b、c,已知a=$\sqrt{3}$,且4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$.
(1)求角A的大小;          
(2)求△ABC的周长l取值范围.

分析 (1)由二倍角公式化简得到2(1-cosA)-2(cos2A-1)=$\frac{7}{2}$,解得即可;
(2)由由正弦定理$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=2,得到b=2sinB,c=2sinC,再根据三角函数的性质即可求出.

解答 解:(1)在△ABC中,∵4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$,
∴2(1-cosA)-2(cos2A-1)=$\frac{7}{2}$
解得cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$;
(2)由正弦定理$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=2,
∴b=2sinB,c=2sinC,
∴l=$\sqrt{3}$+2sinB+2sinC=$\sqrt{3}$+2$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵0<B<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1,
∴2$\sqrt{3}$<l≤3$\sqrt{3}$.

点评 本题考查了三角函数的化简以及正弦定理得应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.命题:若点O和点F(-2,0)分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则$\overrightarrow{OP}$•$\overrightarrow{FP}$的取值范围为[3+2$\sqrt{3}$,+∞).
判断此命题的真假,若为真命题,请做出证明;若为假命题,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二项式($\sqrt{x}$+$\root{3}{x}$)n(n∈N*,n<15)
(1)求二项式展开式中各项系数之和;
(2)若二项式展开式中第9项,第10项,第11项的二项式系数成等差数列,求n的值;
(3)在(2)的条件下写出它展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的左焦点,M为直线x=-3上任意一点,过F作MF的垂线交椭圆C于点P,Q
(i)证明:OM平分线段PQ(其中O为坐标原点);
(ii)当$\frac{|MF|}{|PQ|}$最小时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线C经过伸缩变换φ:$\left\{\begin{array}{l}{2x′=x}\\{y′=3y}\end{array}\right.$后得到曲线C′:y′=6x′2,则曲线c的方程为x2=2y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F分别为A1B1,B1C1的中点,则直线BE与直线CF所成角的余弦值是$\frac{\sqrt{30}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知条件p:k2+3k-4≤0;条件q:函数f(x)=$\frac{1}{2}$x2+kx+lnx在定义域内递增,若p∧q为假,p∨q为真,求实数k的取值范围.

查看答案和解析>>

同步练习册答案