·ÖÎö £¨I£©ÓÉÍÖÔ²CµÄ½¹¾àΪ4£¬¼°µÈ±ßÈý½ÇÐεÄÐÔÖʺÍa2=b2+c2£¬ÇóµÃa£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©£¨i£©ÉèM£¨-3£¬m£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬PQµÄÖеãΪN£¨x0£¬y0£©£¬kMF=-m£¬ÉèÖ±ÏßPQµÄ·½³ÌΪx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬½áºÏÈýµã¹²Ïߵķ½·¨£ºÐ±ÂÊÏàµÈ£¬¼´¿ÉµÃÖ¤£»
£¨ii£©ÀûÓÃÁ½µã¼ä¾àÀ빫ʽ¼°ÏÒ³¤¹«Ê½½«$\frac{|MF|}{|PQ|}$±íʾ³öÀ´£¬ÓÉ»»Ôª·¨ºÍ»ù±¾²»µÈʽ£¬¿ÉµÃ$\frac{|MF|}{|PQ|}$È¡×îСֵʱµÄÌõ¼þ»ñµÃµÈÁ¿¹ØÏµ£¬´Ó¶øÈ·¶¨µãMµÄ×ø±ê£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃc=2£¬
¶ÌÖáµÄÁ½¸ö¶ËµãÓ볤ÖáµÄÒ»¸ö¶Ëµã¹¹³ÉÕýÈý½ÇÐΣ¬¿ÉµÃ
a=$\frac{\sqrt{3}}{2}$•2b£¬¼´ÓÐa=$\sqrt{3}$b£¬a2-b2=4£¬
½âµÃa=$\sqrt{6}$£¬b=$\sqrt{2}$£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1£»
£¨¢ò£©ÉèM£¨-3£¬m£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
PQµÄÖеãΪN£¨x0£¬y0£©£¬kMF=-m£¬
£¨i£©Ö¤Ã÷£ºÓÉF£¨-2£¬0£©£¬¿ÉÉèÖ±ÏßPQµÄ·½³ÌΪx=my-2£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨m2+3£©y2-4my-2=0£¬
¡ày1+y2=$\frac{4m}{3+{m}^{2}}$£¬y1y2=-$\frac{2}{3+{m}^{2}}$£¬
ÓÚÊÇN£¨-$\frac{6}{3+{m}^{2}}$£¬$\frac{2m}{3+{m}^{2}}$£©£¬
ÔòÖ±ÏßONµÄбÂÊkON=-$\frac{m}{3}$£¬
ÓÖkOM=-$\frac{m}{3}$£¬
¡àkOM=kON£¬
¡àO£¬N£¬MÈýµã¹²Ïߣ¬¼´ÓÐOMƽ·ÖÏß¶ÎPQ£»
£¨ii£©ÓÉÁ½µã¼ä¾àÀ빫ʽµÃ|MF|=$\sqrt{1+{m}^{2}}$£¬
ÓÉÏÒ³¤¹«Ê½µÃ|PQ|=$\sqrt{1+{m}^{2}}$•|y1-y2|
=$\sqrt{1+{m}^{2}}$•$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\frac{\sqrt{24£¨{m}^{2}+1£©}}{3+{m}^{2}}$£¬
¡à$\frac{|MF|}{|PQ|}$=$\frac{3+{m}^{2}}{2\sqrt{6}•\sqrt{1+{m}^{2}}}$£¬
Áît=$\sqrt{1+{m}^{2}}$£¨t¡Ý1£©£¬
Ôò$\frac{|MF|}{|PQ|}$=$\frac{{t}^{2}+2}{2\sqrt{6}t}$=$\frac{1}{2\sqrt{6}}$£¨t+$\frac{2}{t}$£©¡Ý$\frac{1}{2\sqrt{6}}$•2$\sqrt{2}$=$\frac{\sqrt{3}}{3}$£¨µ±ÇÒ½öµ±t2=2ʱ£¬È¡¡°=¡±ºÅ£©£¬
¡àµ±$\frac{|MF|}{|PQ|}$×îСʱ£¬ÓÉt2=2=m2+1£¬µÃm=1»òm=-1£¬
´ËʱµãMµÄ×ø±êΪ£¨-3£¬1£©»ò£¨-3£¬-1£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²·½³ÌµÄÔËÓã¬×¢ÒâÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬Í¬Ê±¿¼²éÏÒ³¤¹«Ê½ºÍ»ù±¾²»µÈʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{a}$£¾$\frac{1}{b}$ | B£® | ac£¾bc | C£® | $\sqrt{a}$£¾$\sqrt{b}$ | D£® | $\frac{a}{c}$£¾$\frac{b}{c}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È·Ç³ä·ÖÒ²·Ö±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{13¦Ð}{2}+\sqrt{3}$ | B£® | $\frac{£¨12+\sqrt{3}£©¦Ð}{6}$ | C£® | $\frac{15¦Ð}{2}$ | D£® | $\frac{£¨6+\sqrt{3}£©¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ©Vp | B£® | p¡Äq | C£® | ©Vp¡Åq | D£® | ©Vp¡Å©Vq |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com