精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{13π}{2}+\sqrt{3}$B.$\frac{(12+\sqrt{3})π}{6}$C.$\frac{15π}{2}$D.$\frac{(6+\sqrt{3})π}{3}$

分析 由已知中的三视图可得:该几何体是一个半圆锥和圆柱的组合体,求出各个面的面积相加可得答案.

解答 解:由已知中的三视图可得:该几何体是一个半圆锥和圆柱的组合体,
圆柱的底面半径为1,高为2,故底面积为:π,侧面积为4π,
半圆锥的底面半径为1,高为$\sqrt{3}$,故母线长为2,故侧面积为:π+$\sqrt{3}$,
故组合体的表面积为:π+4π+$\frac{1}{2}$π+π+$\sqrt{3}$=$\frac{13π}{2}+\sqrt{3}$,
故选:A

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在圆柱OO1中,ABCD是其轴截面,EF⊥CD于O1(如图所示),AB=2,BC=$\sqrt{2}$.
(1)设平面BEF与⊙O所在的平面的交线为l,平面ABE与⊙O1所在的平面的交线为m,证明:l⊥m;
(2)求二面A-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=\frac{1}{4}+\frac{1}{4}sin2θ}\end{array}\right.$(θ为参数),以O为极点,x轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线C2的极坐标方程为ρcosφ-2ρsinφ-4=0.
(1)求曲线C1与直线C2的普通方程;
(2)求曲线C1上的点到直线C2的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a>b>0,那么下列不等式成立的是(  )
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}{b}$D.$\frac{b}{a}$>$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的左焦点,M为直线x=-3上任意一点,过F作MF的垂线交椭圆C于点P,Q
(i)证明:OM平分线段PQ(其中O为坐标原点);
(ii)当$\frac{|MF|}{|PQ|}$最小时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个正三棱锥的正视图及俯视图如图所示,则该三棱锥的左视图的面积为(  )
A.6B.$\frac{3\sqrt{3}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线C经过伸缩变换φ:$\left\{\begin{array}{l}{2x′=x}\\{y′=3y}\end{array}\right.$后得到曲线C′:y′=6x′2,则曲线c的方程为x2=2y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是(  )
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某几何体的三视图如图所示,则此几何体的表面积是20+12$\sqrt{10}$.

查看答案和解析>>

同步练习册答案