精英家教网 > 高中数学 > 题目详情
14.如果a>b>0,那么下列不等式成立的是(  )
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}{b}$D.$\frac{b}{a}$>$\frac{a}{b}$

分析 利用不等式的基本性质即可判断出结论.

解答 解:∵a>b>0,
∴a2>ab,ab>b2,$\frac{1}{a}<\frac{1}{b}$,b2<a2即$\frac{b}{a}<\frac{a}{b}$.
故选:A.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.
(1)求圆C的标准方程;
(2)若P(x,y)是圆C上的动点,求3x-4y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a>b>0,c≠0,则下列不等式恒成立的为(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.ac>bcC.$\sqrt{a}$>$\sqrt{b}$D.$\frac{a}{c}$>$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知F1(0,-1),F2(0,1)为椭圆Γ:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,过F1作两条倾斜角互补的直线l1,l2,l1,l2分别与椭圆Γ相交于A,B,C,D四点,且△ABF2的周长为8.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)求阴影部分S的最大值;
(Ⅲ)求证:直线AD与直线BC的交点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“x≠1“是“x<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分也分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆O1:x2+y2-6x-4y-3=0和圆O2:x2+y2-4y=0的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{13π}{2}+\sqrt{3}$B.$\frac{(12+\sqrt{3})π}{6}$C.$\frac{15π}{2}$D.$\frac{(6+\sqrt{3})π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(-x-1)+loga(x+3),其中a>0且a≠1.
(1)求函数f(x)的定义域;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn.已知a1=1,$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)在数列{bn}中,${b_n}=\frac{4n+2}{{{a_n}•{a_{n+1}}}}$,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案