精英家教网 > 高中数学 > 题目详情
5.设a>b>0,c≠0,则下列不等式恒成立的为(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.ac>bcC.$\sqrt{a}$>$\sqrt{b}$D.$\frac{a}{c}$>$\frac{b}{c}$

分析 利用不等式的基本性质即可判断出结论.

解答 解:∵a>b>0,c≠0,
∴$\frac{1}{a}<\frac{1}{b}$,$\sqrt{a}$$>\sqrt{b}$,ac与bc,$\frac{a}{c}$与$\frac{b}{c}$的大小关系与c的正负有关系,
故选:C.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图所示的程序框图输出的结果是(  )
A.s=31B.s=17C.s=11D.s=14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在圆柱OO1中,ABCD是其轴截面,EF⊥CD于O1(如图所示),AB=2,BC=$\sqrt{2}$.
(1)设平面BEF与⊙O所在的平面的交线为l,平面ABE与⊙O1所在的平面的交线为m,证明:l⊥m;
(2)求二面A-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,|x|<0,则¬p是(  )
A.?x∈R,|x|≥0B.?x∈R,|x|>0C.?x∈R,|x|≥0D.?x∈R,|x|<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.
(1)证明:CE⊥AB;
(2)若二面角P-CD-A为60°,求直线CE与平面PAB所成角的正切值;
(3)若AB=kPA,求平面PCD与平面PAB所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在数列{an}中,若a1=1,an+1=an+$\frac{1}{a_n}$,则a4=$\frac{29}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=\frac{1}{4}+\frac{1}{4}sin2θ}\end{array}\right.$(θ为参数),以O为极点,x轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线C2的极坐标方程为ρcosφ-2ρsinφ-4=0.
(1)求曲线C1与直线C2的普通方程;
(2)求曲线C1上的点到直线C2的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a>b>0,那么下列不等式成立的是(  )
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}{b}$D.$\frac{b}{a}$>$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是(  )
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

同步练习册答案