精英家教网 > 高中数学 > 题目详情
3.用不等号(>,<)填空:$\frac{sin100°}{sin200°cos300°cos100°}$>0.

分析 由角的范围得到对应三角函数值的范围,则答案可求.

解答 解:∵sin100°>0,cos100°<0,sin200°<0,cos300°>0,
∴$\frac{sin100°}{sin200°cos300°cos100°}$>0.
故答案为:>.

点评 本题考查了角范围的判断,考查了三角函数值的符号,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是(  )
A.0<a-1<b-1<1B.0<b-1<a<1C.0<b<a-1<1D.0<a-1<b<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一座圆形拱桥,当水面在如图所示位置时,拱桥离水面2米,水面宽12米,当水面下降1米后水面宽为2$\sqrt{51}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线l经过抛物线y=x2-3x+1与y轴的交点,且与直线x+2y=0平行,则直线l的方程是x+2y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设常数a>0,λ∈R,函数f(x)=x2(x-a)-λ(x+a)3
(1)若函数f(x)恰有两个零点,求λ的值;
(2)若g(λ)是函数f(x)的极大值点,求g(λ)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a、b、x、y都为实数,且x2+y2=1,求函数y=$\sqrt{{a}^{2}{x}^{2}+{b}^{2}{y}^{2}}$+$\sqrt{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:(C${\;}_{15}^{0}$)2+(C${\;}_{15}^{1}$)2+(C${\;}_{15}^{2}$)2+…+(C${\;}_{15}^{15}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1+e2的取值范围是$(\frac{4}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某空间几何体的三视图如图所示,则此几何体的体积为(  )
A.14πB.$\frac{10}{3}π$C.$\frac{16}{3}π$D.$\frac{22}{3}π$

查看答案和解析>>

同步练习册答案