精英家教网 > 高中数学 > 题目详情
12.在区间[$\frac{1}{2}$,2]上,函数f(x)=x2+px+q与g(x)=2x+$\frac{1}{x^2}$在同一点取得相同的最小值,那么f(x)在[$\frac{1}{2}$,2]上的最大值是(  )
A.$\frac{13}{4}$B.$\frac{5}{4}$C.8D.4

分析 先利用基本不等式求得函数f(x)的最小值,及此时x的值,进而根据二次函数的性质列方程求得b和c,最后根据二次函数的性质求得函数在区间上的最大值

解答 解:g(x)=2x+$\frac{1}{x^2}$=x+x+$\frac{1}{{x}^{2}}$≥3,当x=1时取得最小值,
∴对于函数f(x),当x=1时,函数有最小值3,
∴$\left\{\begin{array}{l}{1+p+q=3}\\{-\frac{p}{2}=1}\end{array}\right.$
求得p=-2,q=4,
∴f(x)=x2-2x+4=(x-1)2+3,
∴函数f(x)的对称轴为x=1,开口向上,
∴在区间[$\frac{1}{2}$,2]上,函数的最大值为f(2)=4,
故选:D

点评 本题主要考查了基本不等式的应用,二次函数的性质.对于二次函数的对称轴,顶点位置,应能熟练应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在某校组织的一次篮球定点投篮训练中,规定每人最多投3次,在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率为0.25,在B处的命中率为0.8,该同学选择先在A处投一球,以后都在B处投,用X表示该同学投篮训练结束后所得的总分.
(1)求该同学投篮3次的概率;
(2)求随机变量X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,α为其六个面中的一个.点P∈α且P不在棱上,若P到异面直线AA1,CD的距离相等,则点P的轨迹可能是④.(填上所有正确的序号)
①圆的一部分②椭圆的一部分③双曲线的一部分④抛物线的一部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,正四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,点P在侧棱SD上,且SP=3PD.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求二面角P-AC-D的大小;
(Ⅲ)侧棱SC上是否存在一点E,使得BE∥平面PAC.
若存在,求$\frac{SE}{EC}$的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mx-lnx,(m>0).
(1)若m=1,求函数f(x)的极值;
(2)求函数f(x)在区间[1,e]上的最小值;
(3)若f(x)≤0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知AB⊥平面BCE,CD∥AB,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)在线段BE上是否存在一点F,使CF∥平面ADE?
(Ⅱ)求证:平面ABE⊥平面ADE;
(Ⅲ)求二面角B-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x3+ax2+bx+c在x=-2与x=$\frac{2}{3}$处都取得极值.
(1)求a、b的值;
(2)若对?x∈[-3,1],不等式f(x)<0恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知O是棱长为a的正方体ABCD-A1B1C1D1的对角线的交点,平面α经过点O,正方体的8个顶点到α的距离组成集合A,则A中的元素个数最多有(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有一种数字游戏,在4×4的表格中填上1,2,3,4四个数字,且每一行和每一列都不能出现重复数字,若游戏开始时表格的第一行第一列已填上数字1,则此游戏共有216种不同的填法.

查看答案和解析>>

同步练习册答案