精英家教网 > 高中数学 > 题目详情
3.圆O为△ABC的外接圆,半径为2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,则$\overrightarrow{BA}•\overrightarrow{BO}$=6|

分析 由△ABC外接圆圆心O满足$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),可得点O在BC上.由于|$\overrightarrow{AO}$|=|$\overrightarrow{AC}$|.可得△OAC是等边三角形,从而求出|$\overrightarrow{BA}$|,|$\overrightarrow{BO}$|的值,求出$\overrightarrow{BA}$•$\overrightarrow{BO}$的值即可.

解答 解:△ABC外接圆半径等于2,其圆心O满足$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴点O在BC上,∴∠BAC=90°.
∵|$\overrightarrow{AO}$|=|$\overrightarrow{AC}$|.
∴△OAC是等边三角形.
∴∠ACB=60°,∠B=30°,
∴|$\overrightarrow{BA}$|=2$\sqrt{3}$,|$\overrightarrow{BO}$|=2,
∴$\overrightarrow{BA}$•$\overrightarrow{BO}$=|$\overrightarrow{BA}$|•|$\overrightarrow{BO}$|•cosB=2$\sqrt{3}$•2•$\frac{\sqrt{3}}{2}$=6.

点评 本题考查了三角形外接圆的性质、含30°的直角三角形的边角关系、等边三角形的定义、向量的投影等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正三棱锥P-ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P-ABC的外接球的表面积(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某工厂加工某种零件的三道供需流程图如图所示,则该种零件可导致废品的环节有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系Ox中,曲线C1的方程为ρ=2sinθ,C2的方程为ρ=8sinθ,射线θ=$\frac{π}{3}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,已知圆心在第二象限,半径为2$\sqrt{2}$的圆C与直线y=x相切于坐标原点O,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1(a>0)与圆C的一个交点到椭圆的两焦点的距离之和为10.
(1)求圆C的方程;
(2)若圆C上存在一点Q(异于坐标原点),满足点Q到椭圆右焦点F的距离等于OF的长,试求出点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛掷两枚质地均匀的骰子,向上的点数之和为7的概率是(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{18}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个长轴顶点分别为A、B,M为椭圆上一点(异于A、B),则有结论:KMA•KMB=-$\frac{{b}^{2}}{{a}^{2}}$,现在有双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的点A(-3,0).点B(3,0).P为双曲线一点(P不在x轴上)那么KPA•KPB=
A.$\frac{16}{9}$B.$\frac{9}{16}$C.-$\frac{16}{9}$D.-$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2px(p>0)的焦点为F,过F且斜率为$\sqrt{3}$的直线交抛物线于A,B两点,若线段AB的垂直平分线与 x轴交于点M(11,0),则p=(  )
A.2B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函数g(x)=f(x)-kx+2k有三个不同的零点,则实数k的取值范围是(  )
A.$-\frac{{\sqrt{3}}}{3}≤k≤0$B.$k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$D.$-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0

查看答案和解析>>

同步练习册答案