精英家教网 > 高中数学 > 题目详情
17.已知曲线f(x)=x2的一条过点P(x0,y0)的切线,求:
(1)切线平行于直线y=-x+2时切点P的坐标及切线方程;
(2)切线垂直于直线2x-6y+5=0时切点P的坐标及切线方程;
(3)切线与x轴正方向成60°的倾斜角时切点P的坐标及切线方程.

分析 求导数,利用斜率可得切点的坐标,即可求出切线方程.

解答 解:∵f(x)=x2,∴f′(x)=2x,∴f′(x0)=2x0
(1)由2x0=-1,可得x0=-$\frac{1}{2}$,∴y0=$\frac{1}{4}$,∴P(-$\frac{1}{2}$,$\frac{1}{4}$),
切线方程:y-$\frac{1}{4}$=-(x+$\frac{1}{2}$),即x+y+$\frac{1}{4}$=0;
(2)由2x0=-3,可得x0=-$\frac{3}{2}$,∴y0=$\frac{9}{4}$,∴P(-$\frac{3}{2}$,$\frac{9}{4}$),
切线方程:y-$\frac{9}{4}$=-3(x+$\frac{3}{2}$),即12x+4y+9=0;
(2)由2x0=$\sqrt{3}$,可得x0=$\frac{\sqrt{3}}{2}$,∴y0=$\frac{3}{4}$,∴P($\frac{\sqrt{3}}{2}$,$\frac{3}{4}$),
切线方程:y-$\frac{3}{4}$=$\sqrt{3}$(x-$\frac{\sqrt{3}}{2}$),即$\sqrt{3}$x-y-$\frac{3}{4}$=0.

点评 本题考查导数的几何意义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知动圆Q过定点F(0,-1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.
(Ⅰ)求动圆圆心Q的轨迹M的标准方程和椭圆N的标准方程;
(Ⅱ)若过F的动直线m交椭圆N于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2,试求Z的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),M为椭圆的上顶点,O为坐标原点,且△OMF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线l交椭圆于P,Q两点,且使点F为△PQM的垂心(即三角形三条高线的交点)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Q:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右顶点P(2,0),离心率为$\frac{\sqrt{3}}{2}$,O为坐标原点.
(1)求椭圆O的方程;
(2)设A、B、M是椭圆上的三点,$\overrightarrow{OM}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,点N为线段AB的中点,C、D两点的坐标分别为(-$\frac{\sqrt{6}}{2}$,0)、($\frac{\sqrt{6}}{2}$,0),求证:|NC|+|ND|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax3+2x-a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设xn是函数fn(x)=nx3+2x-n的零点.
(i)证明:n≥2时存在唯一xn且${x}_{n}∈(\frac{n}{n+1},1)$;
(i i)若bn=(1-xn)(1-xn+1),记Sn=b1+b2+…+bn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求AC的长和$\frac{BC}{CD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+bx+c,集合A={x|x=f(x),x∈R},B={x|x=f(f(x)),x∈R}.
(1)证明:A⊆B;
(2)当A={-1,3}时,用列举法求集合B;
(3)当A为单元集时,求证:A=B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某厂大量生产一种小零件,经抽样检验知道其次品率是1%,现把这种零件中6件装成一盒,那么该盒中恰好含一件次品的概率是(  )
A.($\frac{99}{100}$)2B.0.01
C.C${\;}_{6}^{1}$$\frac{1}{100}$•(1-$\frac{1}{100}$)5D.C${\;}_{6}^{2}$($\frac{1}{100}$)2•(1-$\frac{1}{100}$)4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x>0}\\{{x}^{2}-4x+3,x≤0}\end{array}\right.$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A.(-∞,-2)B.(-∞,0)C.(0,2)D.(-2,0)

查看答案和解析>>

同步练习册答案