精英家教网 > 高中数学 > 题目详情
如图,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,将△ABD沿对角线BD折起.设折起后点A的位置为A′,并且平面A′BD⊥平面BCD.给出下面四个命题:
①A′D⊥BC;
②三棱锥A′-BCD的体积为
2
2

③CD⊥平面A′BD;
④平面A′BC⊥平面A′DC.
其中正确命题的序号是(  )
A、①②B、③④C、①③D、②④
考点:棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:由题意证出BD⊥DC,然后结合平面PBD⊥平面BCD利用线面垂直的性质定理得CD⊥平面PBD,从而可判断①③;
三棱锥A′-BCD的体积为
1
3
1
2
2
2
2
2
=
2
6
,可判断②;
利用折叠前四边形ABCD中的性质与数量关系,可证BD⊥CD,再利用折叠后BCD平面PBD⊥平面,可证CD⊥平面PBD,从而证明CD⊥PB,再证明PB⊥平面PDC,然后利用线面垂直证明面面垂直.
解答: 解:①∵∠BAD=90°,AD=AB,
∴∠ADB=∠ABD=45°,
∵AD∥BC,∠BCD=45°,
∴BD⊥DC,
∵平面A′BD⊥平面BCD,CD?平面BCD,
∴CD⊥平面A′BD,
∵A′D?平面A′BD,
∴CD⊥A′D,故A′D⊥BC不成立;故①错误;
②三棱锥A′-BCD的体积为
1
3
1
2
2
2
2
2
=
2
6
,故②不成立;
③由①知CD⊥平面A′BD,故③成立;
④折叠前,在四边形ABCD中,AD∥BC,AD=AB,∠BAD=90°,
∴△ABD为等腰直角三角形.
又∵∠BCD=45°,∠DBC=45°,
∴∠BDC=90°.
折叠后,∵平面BCD⊥平面A′BD,CD⊥BD,
∴CD⊥平面A′BD.
又∵A′B?平面A′BD,
∴CD⊥A′B.
又A′B⊥A′D,A′D∩CD=D,
∴A′B⊥平面A′DC.又A′B?平面A′BC,
∴平面A′BC⊥平面A′DC.故④正确.
故选:B.
点评:本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,关键是利用好直线与平面,平面与平面垂直关系的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列方程中(t为参数)与方程y2=x表示同一曲线的是(  )
A、
x=t2
y=t
B、
x=sin2t
y=sint 
C、
x=t
y=
t
D、
x=
1
t2
y=
1
t

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足3an+1+an=0,a2=-
4
3
,则a10等于(  )
A、-4×3-9
B、4×3-9
C、-4×37
D、4×37

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2-(a+1)x+1<0(a∈R)的解集为(
1
a
,1),则a的取值范围为(  )
A、a<0,或a>1B、a>1
C、0<a<1D、a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

直线3x+4y+11=0与圆(x-1)2+(y+1)2=1的位置关系为(  )
A、过圆心B、相离C、相切D、相交

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=max{x2-x,1-x2}的单调增区间是(  )
A、[-
1
2
,0],[1,+∞)
B、(-∞,-
1
2
],[0,1]
C、[-
1
2
,1]
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
ex-1,x≤1
1
1-x
,x>1
,与直线y=kx-1有两个不同的交点,则实数k的取值范围是(  )
A、(3-2
2
,3+2
2
B、(0,3-2
2
C、(-∞,0)∪(0,3-2
2
D、(-∞,3-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(写解题过程)
(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率;
(2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,E是PC的三等分点,F是PB的中点,求证:AF∥面BDE.

查看答案和解析>>

同步练习册答案