分析 (1)小张没有被录用的概率为,即三个事件都不发生,根据独立事件概率公式,P($\overline{ABC}$)=P($\overline{A}$)•P($\overline{B}$)P($\overline{C}$);
(2)小张恰被两个单位录用的概率,$P({\overline ABC})+P({A\overline BC})+P({AB\overline C})$根据独立事件的概率公式即可求得结果.
解答 解:设A,B,C分别表示事件“小张被甲单位录取”,“小张被乙单位录取”,“小张被丙单位录取”,
(1)小张没有被录用的概率为:$P({\overline A\overline B\overline C})=\frac{1}{5}×\frac{1}{4}×\frac{1}{3}$=$\frac{1}{60}$;
∴小张没有被录用的概率是$\frac{1}{60}$;--------( 5 分)
(2)小张恰被两个单位录用的概率为:
$P({\overline ABC})+P({A\overline BC})+P({AB\overline C})$=$\frac{1}{5}×\frac{2}{3}×\frac{3}{4}+\frac{4}{5}×\frac{1}{3}×\frac{3}{4}+\frac{4}{5}×\frac{2}{3}×\frac{1}{4}=\frac{13}{30}$.----( 11分)
∴小张恰被两个单位录用的概率是$\frac{13}{30}$.----( 12 分)
点评 本题考查独立事件概率公式,考查运用概率知识与方法解决实际问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为π | B. | 函数f(x)是偶函数 | ||
| C. | 函数f(x)的图象关于直线$x=\frac{π}{4}$对称 | D. | 函数f(x)在区间$[{0,\frac{π}{2}}]$上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | -$\frac{3}{10}$ | C. | $\frac{4\sqrt{3}-3}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com