精英家教网 > 高中数学 > 题目详情
12.cos$\frac{3π}{4}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由条件利用诱导公式化简所给式子的值,可得结果.

解答 解:cos$\frac{3π}{4}$=cos(π-$\frac{π}{4}$)=-cos$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$,
故选:B.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若tanx=$\frac{\sqrt{3}}{3}$,且x∈(-$\frac{3π}{2}$,$\frac{3π}{2}$),则x=$\frac{π}{6}$,$\frac{7π}{6}$,-$\frac{5π}{6}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据下列条件,求等差数列{an}的前n项和Sn
(1)a1=1,an=9,n=10;
(2)a1=100,d=-5,n=20;
(3)a1=10,d=$\frac{1}{2}$,an=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求下列函数的单调区间:
y=$\sqrt{3}$sin($\frac{2π}{5}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,在AC上取点N,使得AN=$\frac{1}{3}$AC,在AB上取点M,使得AM=$\frac{1}{3}$AB,在BN的延长线上取点P,使得NP=$\frac{1}{2}$BN,延长PA,在CM的延长线取一点Q,若$\overrightarrow{AP}$=$\overrightarrow{QA}$,$\overrightarrow{MQ}$=λ$\overrightarrow{CM}$,试确定λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设P是不等式组$\left\{\begin{array}{l}{x-2y+2≤0}\\{x+y-1≥0}\\{y≤2}\end{array}\right.$表示的平面区域内的一点,点Q(-3,0),则|PQ|的最大值为(  )
A.$\sqrt{29}$B.$\sqrt{31}$C.$\sqrt{10}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若角α的终边经过点P(-3,b),且cosα=-$\frac{3}{5}$,则b=±4,sinα=±$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线2x+(y-3)m-4=0(m∈R)恒过定点P,若点P平分圆x2+y2-2x-4y=0的弦MN,则弦MN所在直线的方程是(  )
A.x+y-5=0B.x+y-3=0C.x-y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(-1,-3),B(3,5),则直线AB的斜率为(  )
A.2B.1C.$\frac{1}{2}$D.不存在

查看答案和解析>>

同步练习册答案