精英家教网 > 高中数学 > 题目详情
20.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱AA1,B1C1,C1D1,DD1的中点,则GH与平面EFH所成角的余弦值为$\frac{3\sqrt{10}}{10}$.

分析 C1H,过G作GM⊥C1H于M,则∠GHC1即为GH与平面EFH所成的角,在△C1GH利用余弦定理求出cos∠GHC1

解答 解:连结EB1,C1H,则平面EFH即为平面EHC1B1
过G作GM⊥C1H于M,则MG⊥平面EFH,
∴∠GHC1即为GH与平面EFH所成的角,
设正方体棱长为2,则C1G=1,GH=$\sqrt{2}$,C1H=$\sqrt{5}$,
∴cos∠GHC1=$\frac{G{H}^{2}+{C}_{1}{H}^{2}-{C}_{1}{G}^{2}}{2GH•{C}_{1}H}$=$\frac{2+5-1}{2×\sqrt{2}×\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$.
故答案为$\frac{3\sqrt{10}}{10}$.

点评 本题考查了直线与平面所成角的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},则∁UA={4,6,7,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设计人员要用10米长的材料(材料的宽度不计)建造一个窗子的边框,如图所示,窗子是由一个矩形ABCD和以AD为直径的半圆组成,窗子的边框不包括矩形的AD边,设半圆的半径为OA=r(米),窗子的透光面积为S(平方米).
(1)r为何值时,S有最大值?
(2)窗子的半圆部分采用彩色玻璃,每平方米造价为300元,窗子的矩形部分均采用透明玻璃,每平方米造价为100元,r=1时,900元的造价够用吗?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A、B、C、D四点,若双曲线C1的一个焦点为F(-$\sqrt{2}$,0),且四边形ABCD的面积为$\frac{16}{3}$,则双曲线C1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$a=2\int_{-3}^3{({x+|x|})dx}$,则在${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^a}$的展开式中,x的幂指数不是整数的项共有15项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛掷两枚质地均匀的正四面体骰子,其4个面分别标有数字1,2,3,4,记每次抛掷朝下一面的数字中较大者为a(若两数相等,则取该数),平均数为b,则事件“a-b=1”发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知t∈R,若复数$z=\frac{1-ti}{1+i}$(i为虚数单位)为纯虚数,则$|{\sqrt{3}+ti}|$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=CD=SD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD的中点,过M,N作平面MNPQ分别与交BC,AD于点P,Q.
(Ⅰ)当Q为AD中点时,求证:平面SAE⊥平面MNPQ;
(Ⅱ)当$\overrightarrow{AQ}=3\overrightarrow{QD}$时,求三棱锥Q-BCN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,且$\frac{1}{3x+y}$+$\frac{2}{x+2y}$=2,则x+y的最小值是$\frac{9}{10}$.

查看答案和解析>>

同步练习册答案