分析 (1)由已知得平面QBC∥平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点.
(2)法一:在△ADC中,作AE⊥DC,垂足为E,连接A1E,∠AEA1为平面α与底面ABCD所成二面角的平面角,由此求出平面α与底面ABCD所成二面角的大小.
(3)法二:以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系,由此利用向量法能求出平面α与底面ABCD所成二面角的大小.
解答
(1)证明:∵BQ∥AA1,BC∥AD,
BC∩BQ=B,AD∩AA1=A,
∴平面QBC∥平面A1AD,
∴平面A1CD与这两个平面的交线相互平行,
即QC∥A1D.
∴△QBC与△A1AD的对应边相互平行,
∴△QBC∽△A1AD,
∴$\frac{BQ}{B{B}_{1}}=\frac{BQ}{A{A}_{1}}=\frac{BC}{AD}=\frac{1}{2}$,
∴Q为BB1的中点.
(2)解法一:如图1所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E.
又DE⊥AA1,且AA1∩AE=A,
所以DE⊥平面AEA1,所以DE⊥A1E.
所以∠AEA1为平面α与底面ABCD所成二面角的平面角.
因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.
又因为梯形ABCD的面积为6,DC=2,
所以S△ADC=4,AE=4.
于是tan∠AEA1=$\frac{A{A}_{1}}{AE}$=1,∠AEA1=$\frac{π}{4}$.
故平面α与底面ABCD所成二面角的大小为$\frac{π}{4}$.
(3)解法二:如图2所示,![]()
以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系.
设∠CDA=θ,BC=a,则AD=2a.
因为S四边形ABCD=$\frac{a+2a}{2}$•2sin60°=6,
所以a=$\frac{4\sqrt{3}}{3}$.
从而可得C(1,$\sqrt{3}$,0),A1($\frac{8\sqrt{3}}{3}$,0,4),
所以DC=(1,$\sqrt{3}$,0),$\overrightarrow{D{A}_{1}}$=($\frac{8\sqrt{3}}{3}$,0,4).
设平面A1DC的法向量$\overrightarrow{n}$=(x,y,1),
由$\left\{\begin{array}{l}{\overrightarrow{DA}•\overrightarrow{n}=\frac{8\sqrt{3}}{3}x+4=0}\\{\overrightarrow{DC}•\overrightarrow{n}=x+\sqrt{3}y=0}\end{array}\right.$,
得$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
所以$\overrightarrow{n}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,1).
又因为平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
所以cos<$\overrightarrow{n}$,$\overrightarrow{m}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{2}}{2}$,
故平面α与底面ABCD所成二面角的大小为$\frac{π}{4}$.
点评 本题主要考查空间线面平行的性质以及空间二面角的求解,建立坐标系,求出平面法向量利用向量法是解决本题的关键.考查学生的运算和推理能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患高血压 | 不患高血压 | 合计 | |
| 男 | m | 6 | |
| 女 | 12 | n | |
| 合计 | 60 |
| P(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com