精英家教网 > 高中数学 > 题目详情

【题目】已知向量.

1)求函数fx)的单调增区间.

2)若方程上有解,求实数m的取值范围.

3)设,已知区间[ab]abRab)满足:ygx)在[ab]上至少含有100个零点,在所有满足上述条件的[ab]中求ba的最小值.

【答案】1;(2;(3.

【解析】

1)根据数量积运算和倍角公式、辅助角公式,求出.令,求出的取值范围,即得函数的单调递增区间;

2)由(1)知.时,求得.,则方程上有解,即方程上有解,即求实数的取值范围;

3)求出函数的解析式,令,得零点的值,可得零点间隔依次为.最小,则均为零点,结合函数上至少含有100个零点,求得的最小值.

1

.

,得

函数的单调递增区间为.

2)由(1)知.

,即.

,则.

方程上有解,即方程上有解.

上单调递增,在上单调递减,

,即.

实数的取值范围为.

3.

,得

.

函数的零点间隔依次为.

最小,则均为零点.

函数上至少含有100个零点,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,ABCDACAB=2BC=2,ACFB.

(1)求证:AC⊥平面FBC

(2)求四面体FBCD的体积;

(3)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)设直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程和直线的普通方程;

(Ⅱ)若直线与曲线相交于 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:

级数

一级

二级

三级

每月应纳税所得额元(含税)

税率

3

10

20

现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数和方差(同一组中的数据用该区间的中点值作代表);

(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率;

(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 底面

(1)证明:平面平面

(2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是()

A. ,则”是真命题

B. 在同一坐标系中,函数的图象关于轴对称.

C. 命题“,使得”的否定是“,都有

D. ,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2a3=45,a1a4=14.

(1)求数列{an}的通项公式;

(2)通过公式bn构造一个新的数列{bn}.若{bn}也是等差数列,求非零常数c

(3)对于(2)中得到的数列{bn},求f(n)= (n∈N*)的最大值.

查看答案和解析>>

同步练习册答案