精英家教网 > 高中数学 > 题目详情
13.设数列{an}的前n项和记为Sn,且Sn=2-an,n∈N*,设函数f(x)=log${\;}_{\frac{1}{2}}$x,且满足bn=f(an)-3.
(1)求出数列{an},{bn}的通项公式;
(2)记cn=an•bn,{cn}的前n项和为Tn,求Tn的最小值.

分析 (1)利用递推关系可得an,再利用对数的运算性质可得bn
(2)利用“错位相减法”与等比数列的前n项和公式、数列的单调性即可得出.

解答 解:(1)Sn=2-an,n∈N*,∴n=1时,a1=2-a1,解得a1=1.n≥2时,an=Sn-Sn-1=2-an-(2-an-1),化为:an=$\frac{1}{2}{a}_{n-1}$,
∴数列{an}是等比数列,首项为1,公比为$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n-1}$.
函数f(x)=log${\;}_{\frac{1}{2}}$x,且满足bn=f(an)-3.
∴bn=$lo{g}_{\frac{1}{2}}(\frac{1}{2})^{n-1}$-3=n-4.
(2)cn=an•bn=(n-4)×$(\frac{1}{2})^{n-1}$.
∴{cn}的前n项和为Tn=-3-2×$\frac{1}{2}$-$(\frac{1}{2})^{2}$+0+…+(n-4)×$(\frac{1}{2})^{n-1}$.
$\frac{1}{2}$Tn=$-3×\frac{1}{2}$-2×$(\frac{1}{2})^{2}$+…+(n-5)×$(\frac{1}{2})^{n-1}$+(n-4)×$(\frac{1}{2})^{n}$,
∴$\frac{1}{2}{T}_{n}$=$-3+\frac{1}{2}+(\frac{1}{2})^{2}$+…+$(\frac{1}{2})^{n-1}$-(n-4)×$(\frac{1}{2})^{n}$=$-4+\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-(n-4)×$(\frac{1}{2})^{n}$=-2-(n-2)×$(\frac{1}{2})^{n}$,
∴Tn=-4-$\frac{n-2}{{2}^{n-1}}$.
∴Tn+1-Tn=$-4-\frac{n-1}{{2}^{n}}$-$(-4-\frac{n-2}{{2}^{n-1}})$=$\frac{n-3}{{2}^{n}}$,
∴n≤3时,Tn+1≤Tn;n≥4时,Tn+1>Tn
即T1>T2>T3=T4<T5<….
∴Tn的最小值是T3=T4=$-\frac{17}{4}$.

点评 本题考查了递推关系、对数的运算性质、“错位相减法”、等比数列的前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,正方体ABCD-A1B1C1D1中,棱长为1,点P在体对角线上,PB=$\frac{1}{3}$PB′,则P点坐标为(  )
A.($\frac{1}{3}$$,\frac{1}{3}$,$\frac{1}{3}$)B.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)C.($\frac{5}{6}$,$\frac{5}{6}$,$\frac{1}{6}$)D.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
①若m⊥α,α⊥β,则m∥β                        
②若m⊥α,α∥β,n?β,则m⊥n
③若m?α,n?β,m∥n,则α∥β                   
④若n⊥α,n⊥β,m⊥β,则m⊥α
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{4}{|x|+2}$-1的定义域是[a,b](a,b为整数),值域是[0,1],请在后面的下划线上写出所有满足条件的整数数对(a,b)(-2,0),(-2,1),(-2,2),(-1,2),(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设$\frac{2}{3}$<a<1,函数f(x)=x3-$\frac{3}{2}$ax2+b在区间[-1,1]上的最大值为1,最小值为-$\frac{\sqrt{6}}{2}$,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{k}{x}$(k>0),xOy平面上两点A,B的坐标分别为(-1,f(1)),(3,f(-3)),且满足$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
(1)求两点A、B的坐际:
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且Sn=2n-1(n∈N*
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{2}^{n}}{{2}^{2n+1}-3×{2}^{n}+1}$,且数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={1,2,3,4,5},B={1,3,5,7,9},C=A∩B,则集合C的子集的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若数列{an}中,a1=$\frac{1}{2}$,an+1+2an=0(n∈N*),则S5=(  )
A.-$\frac{11}{2}$B.-$\frac{31}{6}$C.$\frac{11}{2}$D.$\frac{31}{6}$

查看答案和解析>>

同步练习册答案