精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{k}{x}$(k>0),xOy平面上两点A,B的坐标分别为(-1,f(1)),(3,f(-3)),且满足$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
(1)求两点A、B的坐际:
(2)求|$\overrightarrow{AB}$|.

分析 (1)根据数量积列方程解出k;
(2)代入两点间的距离公式计算.

解答 解:(1)∵$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
∴-3+f(1)f(-3)=-15,即-3-k$•\frac{k}{3}$=-15.
又k>0,∴k=6.
∴f(1)=k=6,f(-3)=-$\frac{k}{3}$=-2.
∴A(-1,6),B(3,-2).
(2)|$\overrightarrow{AB}$|=|AB|=$\sqrt{(3+1)^{2}+(-2-6)^{2}}$=4$\sqrt{5}$.

点评 本题考查了平面向量的数量积运算,向量的模长公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,已知PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分别是BC、AP的中点,则异面直线AC与DE所成角的大小为$arccos\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C:(x-1)2+y2=r2(r>0)与直线l:y=x+3,且直线l有唯一的一个点P,使得过P点作圆C的两条切线互相垂直,则r=2;设EF是直线l上的一条线段,若对于圆C上的任意一点Q,∠EQF≥$\frac{π}{2}$,则|EF|的最小值=4$\sqrt{2}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1、2表示没有击中目标,3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )
A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和记为Sn,且Sn=2-an,n∈N*,设函数f(x)=log${\;}_{\frac{1}{2}}$x,且满足bn=f(an)-3.
(1)求出数列{an},{bn}的通项公式;
(2)记cn=an•bn,{cn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}和等差数列{bn}均是首项为1的递增数列,且a2=b2,a3=b4
(I)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=an+(-1)nbn,求数列{cn)前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分别是C1D1、CD的中点,则异面直线A1N和B1M所成角的余弦值为(  )
A.$\frac{\sqrt{30}}{10}$B.0C.$\frac{\sqrt{15}}{10}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线m和不重合的两个平面α、β,则下列命题正确的是(  )
A.若m∥α,m?β,则α∥βB.若m∥α,m∥β,则α∥βC.若m⊥α,m∥β,则α⊥βD.若m⊥α,m⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD的底面ABCD是梯形,AB∥CD,且AB=$\frac{2}{3}$CD,试问在PC上能否找到一点E,使得BE∥平面PAD?若能,请确定点E的位置,并给出证明;若不能,请说明理由.

查看答案和解析>>

同步练习册答案