精英家教网 > 高中数学 > 题目详情
9.已知圆C:(x-1)2+y2=r2(r>0)与直线l:y=x+3,且直线l有唯一的一个点P,使得过P点作圆C的两条切线互相垂直,则r=2;设EF是直线l上的一条线段,若对于圆C上的任意一点Q,∠EQF≥$\frac{π}{2}$,则|EF|的最小值=4$\sqrt{2}$+2.

分析 ①设两个切点分别为A、B,由题意得四边形PACB为正方形,圆心C到直线y=x+3的距离等于PC,由此求得r的值;
②根据题意,得出从圆上任一点Q向直线上的两点连线成角,所成角最小时对应的点Q的位置,结合∠EQF的值求出|EF|的最小值.

解答 解:①∵圆心为C(1,0),半径为r;
设两个切点分别为A、B,则由题意可得四边形PACB为正方形,
∴PC=$\sqrt{2}$r,
∴圆心C到直线y=x+3的距离等于PC=$\sqrt{2}$r,
即$\frac{|1-0+3|}{\sqrt{2}}$=$\sqrt{2}$r,
解得r=2;
②由题意,圆心C(1,0)到直线l:y=x+3的距离为2$\sqrt{2}$>2(半径),
所以直线l和圆相离;
从圆上任一点Q向直线上的两点连线成角,当且仅当点Q在如图所示的位置时,∠EQF最小,
又∠EQF≥$\frac{π}{2}$,得∠EQP≥$\frac{π}{4}$;
∴PE≥PQ=PC+CQ=2$\sqrt{2}$+2,
∴EF≥2PQ=4$\sqrt{2}$+4;
即|EF|的最小值为4$\sqrt{2}$+4.
故答案为:2;4$\sqrt{2}$+4.

点评 本题主要考查了直线和圆的位置关系以及点到直线的距离公式的应用问题,体现了转化思想,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\sqrt{2-lo{g}_{2}x}$的定义域为(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,E,F,G分别是PB,AB,PC的中点,若四边形ABCD是平行四边形.求证:平面EFG∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z=(2-i)(1+i),则在复平面内,z对应点的坐标为(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
①若m⊥α,α⊥β,则m∥β                        
②若m⊥α,α∥β,n?β,则m⊥n
③若m?α,n?β,m∥n,则α∥β                   
④若n⊥α,n⊥β,m⊥β,则m⊥α
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点M(m,n)在直线x+2$\sqrt{2}$y-3=0上,则$\sqrt{{m}^{2}+{n}^{2}}$的最小值为(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{4}{|x|+2}$-1的定义域是[a,b](a,b为整数),值域是[0,1],请在后面的下划线上写出所有满足条件的整数数对(a,b)(-2,0),(-2,1),(-2,2),(-1,2),(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{k}{x}$(k>0),xOy平面上两点A,B的坐标分别为(-1,f(1)),(3,f(-3)),且满足$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
(1)求两点A、B的坐际:
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项的和为Sn,a1=-1,a2=2,满足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),则a100=9998.

查看答案和解析>>

同步练习册答案