分析 Sn+1=3Sn-2Sn-1-an-1+2(n≥2),可得Sn+2=3Sn+1-2Sn-an+2,a3=7.相减可得:an+2=3an+1-3an-an-1,变形为:(an+2-an+1)+(an-an-1)=2(an+1-an),利用等差数列的通项公式可得:an+1-an,再利用“累加求和”方法即可得出.
解答 解:∵Sn+1=3Sn-2Sn-1-an-1+2(n≥2),
可得Sn+2=3Sn+1-2Sn-an+2,a3=7.
∴an+2=3an+1-3an-an-1,
变形为:(an+2-an+1)+(an-an-1)=2(an+1-an),
∴数列{an+1-an}是等差数列,首项为3,公差d=(a3-a2)-(a2-a1)=5-3=2.
∴an+1-an=3+2(n-1)=2n+1.
∴a100=(a100-a99)+(a99-a98)+…+(a2-a1)+a1=(2×99+1)+(2×98+1)+…+(2×1+1)+(-1)=$2×\frac{99×(1+99)}{2}$+99-1=9998.
故答案为:9998.
点评 本题考查了递推关系、“累加求和”方法、等差数列的相同公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{30}}{10}$ | B. | 0 | C. | $\frac{\sqrt{15}}{10}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,m?β,则α∥β | B. | 若m∥α,m∥β,则α∥β | C. | 若m⊥α,m∥β,则α⊥β | D. | 若m⊥α,m⊥β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [0,+∞) | C. | (1,2] | D. | (-∞,0]∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 曲线y=g(x)的一个对称中心为点(-$\frac{π}{12}$,0) | |
| B. | 曲线y=g(x)的一个对称轴为直线x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z) | |
| C. | 函数y=g(x)在区间[$\frac{2π}{3}$,$\frac{3π}{4}$]内单调递减 | |
| D. | 函数y=g(x)在区间[$\frac{2π}{3}$,$\frac{3π}{4}$]内不单调 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com