精英家教网 > 高中数学 > 题目详情
8.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,则满足${∫}_{1}^{t}$$\frac{1}{x}$dx=4x+y的t的最大值为(  )
A.e-4B.e-1C.1D.e${\;}^{\frac{7}{2}}$

分析 画出满足条件的平面区域,求出z的最大值,从而求出t的最大值即可.

解答 解:画出满足条件的平面区域,如图示:

设z=4x+y,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
当直线y=-4x+z过A($\frac{1}{2}$,$\frac{3}{2}$),z最大,
故z的最大值是$\frac{7}{2}$,
∴${∫}_{1}^{t}$$\frac{1}{x}$dx=lnt≤$\frac{7}{2}$,
故t≤${e}^{\frac{7}{2}}$.
故选:D.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为($0,\frac{3}{2}$),它在y轴右侧的第一个最高点和最低点分别为(x0,3),(x0+2π,-3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果圆x2+y2+Dx+Ey+F=0经过原点,而且与x轴只有一个交点,那么(  )
A.F=0,D≠0,E≠0B.E=F=0,D≠0C.D=F=0,E≠0D.D=E=0,F≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间(1,+∞)上不是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=-x2+2x+1C.y=$\frac{x}{1-x}$+2D.y=1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.如果命题“非p”与命题“p∨q”都是真命题,那么命题q一定是真命题
B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
C.若命题p:?x0∈R,x02+2x0-3<0,则非p:?x∈R,x2+2x-3≥0
D.“a=-2”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a3+a9=8,则数列{an}的前11项和S11等于44.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a+$\frac{1}{4^x+1}$是奇函数.
(1)求实数a的值;   
(2)确定函数f(x)的单调性;    
(3)当x∈[-1,2)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简求值
(1)$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$
(2)$(-3{a^{\frac{1}{3}}}{b^{\frac{3}{4}}})•(\frac{1}{2}{a^{\frac{2}{3}}}{b^{\frac{1}{4}}})÷(-6{a^{\frac{5}{12}}}{b^{\frac{7}{12}}})(其中a>0,b>0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的图象过点$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案