精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求证:1-x≤f(x)≤
1
1+x

(2)当x≥0时,若f(x)≥g(x)恒成立,求a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:计算题,证明题,分类讨论,导数的综合应用
分析:(1)令h(x)=f(x)-(1-x),求出导数,和单调区间,极值和最值,得到h(x)≥h(0)=0;
令m(x)=f(x)-
1
1+x
,求出导数、得到单调区间和极值、最值,得到m(x)≤m(0)=0,即可得证;
(2)令F(x)=g(x)-f(x)=ln(x+1)+ax2-x,求出导数,讨论a≤0,a≥
1
2
,0<a<
1
2
,函数的单调性,并运用检验是否恒成立.
解答: (1)证明:令h(x)=f(x)-(1-x)=x-ln(x+1),则h′(x)=
x
x+1

当-1<x<0 时,h′(x)≤0,函数h(x)递减,
当x>0时,h′(x)>0,函数h(x)递增,故h(x)在x=0处取得最小值h(0)=0,
即对x>-1,有h(x)≥h(0)=0,故f(x)≥1-x,
令m(x)=f(x)-
1
1+x
=
x
1+x
-ln(x+1)
,则m′(x)=-
x
(1+x)2

当-1<x≤0 时,m′(x)≥0,函数m(x)递增,
当x>0时,m′(x)<0,函数m(x)递减,故m(x)在x=0处取得最大值m(0)=0,
即对x>-1,有m(x)≤m(0)=0,故f(x)≤
1
1+x

∴1-x≤f(x)≤
1
1+x
;                                              
(2)解:令F(x)=g(x)-f(x)=ln(x+1)+ax2-x,则F′(x)=
2ax2+(2a-1)x
1+x

①当a≤0时,2a-1<0,当x≥0,∴x+1>0,2ax+2a-1≤0,
∴F′(x)≤0,∴函数y=F(x),x≥0为减函数,
∴当x≥0时,F(x)≤F(0)=0,即a≤0时,f(x)≥g(x)成立;
②当0<a<
1
2
时,
1-2a
2a
>0,取x=
1
a
>0,∵F(
1
a
)=ln(1+
1
a
)>0,
即g(
1
a
)>f(
1
a
),与题意矛盾.
③当a
1
2
时,1-2a≤0,∴当x≥0时,∴x+1>0,2ax+2a-1≥0,∴F′(x)≥0,
∴函数y=F(x)在(0,+∞)为增函数,∴x>0时,F(x)>F(0)=0,
即g(x)>f(x),与题意矛盾.
综合①②③,当a∈(-∞,0)时,对x≥0,有f(x)≥g(x).
点评:本题考查导数在函数中的运用:求单调区间、求极值和最值,同时考查不等式恒成立问题转化为求最值问题,考查分类讨论的思想方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

半径为4m的水轮如图所示,水轮圆心O距离水面2m,已知水轮沿逆时针方向匀速旋转,每分钟转动6圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.
(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;
(2)在水轮转动的一圈内,有多长时间点P距离水面超过4m?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点为原点,始边为x轴的正半轴,若角α的终边过P(-3a,4a),a≠0,求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x不等式:|x+3|-|2x-1|>
x
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
x
(a>0)
(1)求函数f(x)的单调区间和极值.
(2)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={0,1,2,3,4},集合A={a|
a-1
a-4
≤0,a∈Z},集合B={b|b(b2-5b+6)=0}.求集合A∩B,∁UB,(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)2e 
x
a
,其导函数y=f′(x)的图象经过点(-3,0),(3,0),如图所示.
(Ⅰ)求f(x)的极大值点;
(Ⅱ)求a的值;
(Ⅲ)若m≥0,求f(x)在区间[m,m+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,求抽取的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(
π
4
-α)=-
1
2
,sin(
π
4
+β)=
3
2
,其中
π
4
<α<
π
2
π
4
<β<
π
2
,求角(α+β)的值.

查看答案和解析>>

同步练习册答案