精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx+
1
x
(a>0)
(1)求函数f(x)的单调区间和极值.
(2)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,求出a的值;若不存在,请说明理由.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求出原函数的导函数,由导数的正负可得函数f(x)的单调区间和极值;
(2)求出原函数的导函数,由导函数大于0解出x的范围,然后对a分三种情况讨论,利用f(x)在[1,e]上的最小值为0,求a的值.
解答: 解:由题意知x>0,f′(x)=
a
x
-
1
x2
(a>0).(1分)
(1)由f′(x)>0得
a
x
-
1
x2
>0,解得x>
1
a

所以函数f(x)的单调增区间是(
1
a
,+∞);
由f′(x)<0得
a
x
-
1
x2
<0,解得x<
1
a

所以函数f(x)的单调减区间是(0,
1
a
).
所以当x=
1
a
时,函数f(x)有极小值为f(
1
a
)=aln
1
a
+a=a-aln a.(6分)
(2)由(1)可知,当x∈(0,
1
a
)时,f(x)单调递减,
当x∈(
1
a
,+∞)时,f(x)单调递增,
①若0<
1
a
<1,即a>1时,函数f(x)在[1,e]上为增函数,
故函数f(x)的最小值为f(1)=aln 1+1=1,显然1≠0,故不满足条件.(9分)
②若1≤
1
a
≤e,即
1
e
≤a≤1时,函数f(x)在[1,
1
a
)上为减函数,在[
1
a
,e]上为增函数,
故函数f(x)的最小值为f(
1
a
)=aln
1
a
+a=a-aln a=a(1-ln a)=0,即ln a=1,解得a=e,
1
e
≤a≤1,故不满足条件.(11分)
③若
1
a
>e,即0<a<
1
e
时,函数f(x)在[1,e]上为减函数,
故函数f(x)的最小值为f(e)=aln e+
1
e
=a+
1
e
=0.
即a=-
1
e
,而0<a<
1
e
,故不满足条件.
综上所述,这样的a不存在.(12分)
点评:本题考查了利用导数研究函数在闭区间上的最值,考查了分类讨论的数学思想方法,解答的关键是对a的范围正确分段,此题是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个扇形的周长为4,求扇形的半径、圆心角各取何值时,此扇形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=cos2x+2
3
sinxcosx-sin2x
(1)求f(x)的最小正周期;
(2)若x∈[-
π
12
π
4
],则当x取何值时函数取得最值,最值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kax-a-x(a>0且a≠1)是定义在R上的奇函数.
(1)求k的值;
(2)若f(1)=
3
2
,且函数f(x)在[1,t]上的值域为[
3
2
15
4
],求t的值;
(3)设函数g(x)=f(x)-f(2-x)+3,x1,x2是R上的任意两个实数,且x1+x2=1,若g(mx1)+g(mx2)恒为一个常数,求非零常数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽 取甲、乙两种方式培育的树苗各20株,测量其髙度,得到的茎叶图如图(单位:cm):

(Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大?
(Ⅱ)现从用甲种方式培育的高度不低于80cm的树苗中随机抽取两株,求高度为86cm的树苗至少有1株被抽中的概率;
(Ⅲ)如果规定高度不低于85cm的为生长优秀,请填写下面的2x2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为树苗高度与培育方式有关?”
甲方式乙方式合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求证:1-x≤f(x)≤
1
1+x

(2)当x≥0时,若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对给定区间l上任意两个实数x1,x2都满足不等式f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,则称函数f(x)在区间l上具有性质M.
(1)写出一个对数函数f(x),使得f(x)在(0,+∞)上具有性质M;(不需说明理由)
(2)(i)求证:函数f(x)=x2在区间[0,+∞)上具有性质M;
(ii)设x,y∈R*,且x 
3
2
+y 
3
2
=a(a为正常数),试求x3+y3的最小值;
(3)已知函数f(x)=
x2+2x,x≥-2
x+2,x<-2
,若实数a使得f(x)在区间[a,5](a<5)上具有性质M,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2sinθ,以极点O为坐标原点,极轴Ox为x轴建立直角坐标系,直线的参数方程是
x=-
3
5
t+2
y=
4
5
t
(为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与x轴的交点是M,N是曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M,求正实数a的取值范围;
(3)证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

同步练习册答案