考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先利用三角函数关系式的恒等变换,把三角函数关系式变形成正弦型函数,进一步求出函数的最小正周期.
(2)利用三角函数的定义域求出函数的值域,进一步求出参数的取值范围.
(3)利用函数的单调性求出函数的值域,进一步说明函数的单调性问题.
解答:
解:(1)
f(x)=cos2x+sin2x+sin2x-cos2x+=
cos2x+sin2x-cos2x+=sin(2x-)+,
函数f(x)的最小正周期T=π,
(2)当
t∈[,]时,
2t-∈[0,],
⇒F(t)=[f(t)]2-2f(t)=[f(t)-]2-2∈[-2,-1],
存在
t∈[,],
满足F(t)-m>0的实数m的取值范围为(-∞,-1).
(3)存在唯一的
x2∈[-,],使f(x
1)•f(x
2)=1成立.
当
x1∈[-,]时,
2x1-∈[-,],
f(x1)=sin(2x1-)+∈[-1,+1]f(x2)==sin(2x2-)+∈[-1,+1]⇒sin(2x2-)=-∈[-1,1],
设
-=a,则a∈[-1,1],由
sin(2x2-)=a,
得
2x2-=2kπ+arcsina或2x2-=2kπ+π-arcsina,k∈Z.
所以x
2的集合为
{x2|x2=kπ+•arcsina+或x2=kπ-•arcsina+,k∈Z},
∵
-≤•arcsina+≤,≤-•arcsina+≤,
∴x
2在
[-,]上存在唯一的值
x2=•arcsina+使f(x
1)•f(x
2)=1成立.
点评:本题考查的知识要点:三角函数关系式的恒等变换,利用正弦型函数的定义域求函数的值域,函数的存在性问题的应用.