精英家教网 > 高中数学 > 题目详情
11.已知$sinα=-\frac{4}{5}$,α在第三象限,求cosα,tanα的值.

分析 由sinα的值及α为第三象限角,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值即可.

解答 解:∵sinα=-$\frac{4}{5}$,α在第三象限,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=$\frac{-\frac{4}{5}}{-\frac{3}{5}}$=$\frac{4}{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设f(x)为奇函数,且在(-∞,0)上递减,f(-2)=0,则xf(x)<0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将一个棱长为a的正方体嵌入到四个半径为1且两两相切的实心小球所形成的球间空隙内,使得正方体能够任意自由地转动,则a的最大值为(  )
A.$\frac{{2\sqrt{2}-\sqrt{6}}}{6}$B.$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$C.$\frac{{2\sqrt{3}-2\sqrt{2}}}{3}$D.$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某学校为挑选参加地区汉字听写大赛的学生代表,从全校报名的1200人中筛选出300人参加听写比赛,然后按听写比赛成绩择优选取75人再参加诵读比赛.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)[90,95]
1269411
请你根据该样本数据估计进入诵读比赛的分数线大约是多少?
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)={cos^2}\frac{x}{2}-{sin^2}\frac{x}{2}$的最小值是(  )
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,将四边形ABCD中△ADC沿着AC翻折到ADlC,则翻折过程中线段DB中点M的轨迹是(  )
A.椭圆的一段B.抛物线的一段C.一段圆弧D.双曲线的一段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线y=-$\frac{1}{2}$x+lnx的切线是直线y=$\frac{1}{2}$x+b,则b的值为(  )
A.-2B.-1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC中,A、B、C分别是三个内角,a、b、c分别是角A、B、C所对的边,且a=$\sqrt{3}$,A=$\frac{π}{3}$.
(1)求△ABC的周长的最大值.
(2)求△ABC面积S的最大值.

查看答案和解析>>

同步练习册答案