精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:关于x的一元二次方程有两个不相等的实数根;命题q:关于x的一元二次方程对于任意实数a都没有实数根.

若命题p为真命题,求实数m的取值范围;

若命题p和命题q中有且只有一个为真命题,求实数m的取值范围.

【答案】(1);(2)

【解析】

由题意可得判别式大于0,由绝对值不等式的解法可得m的范围;考虑命题q真,运用绝对值不等式的性质和判别式小于0,解不等式可得m的范围,由pq一真一假,解不等式即可得到所求范围.

命题p:关于x的一元二次方程有两个不相等的实数根,

可得,解得

命题q:关于x的一元二次方程对于任意实数a都没有实数根,

可得

可得无实数解,

可得,即

命题p和命题q中有且只有一个为真命题,

可得

即有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是函数y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )图象的一部分.为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点(
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC边上的中线AM=2 ,高线AH= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是直线上的动点,定点 的中点,动点满足.

(1)求点的轨迹的方程

(2)过点的直线交轨迹两点,上任意一点,直线两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P的元素个数为个且元素为正整数,将集合P分成元素个数相同且两两没有公共元素的三个集合ABC,即 ,其中 若集合ABC中的元素满足 2,则称集合P为“完美集合”.

若集合22345,判断集合P和集合Q是否为“完美集合”?并说明理由;

已知集合x345为“完美集合”,求正整数x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从6名干部中(其中男生4人,女生2人)选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被选中的概率;
(3)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

同步练习册答案