精英家教网 > 高中数学 > 题目详情
18.已知函数 f(x)=sin(x-$\frac{3}{2}$π)cos($\frac{π}{2}$-x)+cosxcos(π-x).
(Ⅰ)求 f(x)的最小正周期;
(Ⅱ)当x∈[$\frac{π}{4}$,$\frac{3}{4}π$]时,求 f(x) 的值域.

分析 利用诱导公式以及二倍角公式,结合两角差的正弦函数化简表达式,
(1)直接利用周期个数求解即可.
(2)求出相位的范围,利用正弦函数的值域求解函数的值域即可.

解答 (本小题满分13分)
解:(Ⅰ) f(x)=sin(x-$\frac{3}{2}$π)cos($\frac{π}{2}$-x)+cosxcos(π-x)
=cosxsinx-cos2x=$\frac{1}{2}$sin2x-$\frac{1+cos2x}{2}$
=$\frac{\sqrt{2}}{2}$$sin(2x-\frac{π}{4})-\frac{1}{2}$.
所以函数f(x)的最小正周期为:π;…(6分)
(Ⅱ)∵x∈[$\frac{π}{4}$,$\frac{3}{4}π$],∴2x-$\frac{π}{4}$∈$[\frac{π}{4},\frac{5π}{4}]$,
∴$sin(2x-\frac{π}{4})∈[-\frac{\sqrt{2}}{2},1]$,
∴$f(x)∈[-1,\frac{\sqrt{2}-1}{2}]$.…(13分)

点评 本题考查两角和与差的三角函数,二倍角公式的应用,正弦函数的周期以及函数的值域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a-$\frac{1}{x}$-lnx(a∈R).
(1)若a=2,求函数f(x)在(1,e2)上的零点个数(e为自然对数);
(2)若f(x)恰有一个零点,求a的取值集合;
(3)若f(x)有两零点x1,x2(x1<x2),求证:2<x1+x2<3ea-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.若AE=8,AB=10,则CE的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.异面直线l与m所成的角为$\frac{π}{3}$,异面直线l与n所成的角为$\frac{π}{4}$,则异面直线m与n所成角的范围是(  )
A.[$\frac{π}{6}$,$\frac{π}{2}$]B.[$\frac{π}{12}$,$\frac{π}{2}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[$\frac{π}{6}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.变量 x,y 满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则z=2x-y的最大值为(  )
A.-1B.1C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{4}{9}$)${\;}^{\frac{1}{2}}$+(-5.6)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.125${\;}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知($\sqrt{x}$+$\frac{x}{2}$)n的展开式中,前三项系数成等差数列,求展开式中含有$\sqrt{{x}^{11}}$的项的二项式系数及项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱椎P-ABCD中,底面ABCD是边长为6的菱形,侧棱PD⊥平面ABCD,BD=6,PD=3$\sqrt{6}$,点E,F分别是PB,CB上靠近点B的一个三等分点.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求三棱椎F-PAB的高;
(Ⅲ)在线段PC上是否存在一点G,使得FG与平面PDC所成角的正弦值为$\frac{1}{3}$?若存在,请求出CG的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(1-2x)100=a0+a1x+a2x2+…+a100x100(x∈R),则(a0+a1)+(a1+a2)+…+(a98+a99)+(a99+a100)的值为(  )
A.-1B.1C.1-2100D.2100-1

查看答案和解析>>

同步练习册答案